Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновое уравнение для волн де Бройля

Круг явлений, в которых наиболее просто и очевидно проявляются квантово-механические закономерности, определяется в первую очередь их очевидной несовместимостью с классическими представлениями. К этому кругу относятся прежде всего явления, обусловленные волново-корпускулярным дуализмом в движении микрочастиц. Построение модели такого движения привело к формулировке уравнения Шредингера, которое является новым уравнением физики и не может быть выведено из ранее известных уравнений. Однако в физике давно было известно, что любые волны описываются соответствующим волновым уравнением. Исторически и логически уравнение Шредингера возникло как уравнение для волн де Бройля. Такой подход к уравнению Шредингера является наиболее простым и естественным в рамках индуктивной формулировки физической модели в курсе общей физики. Однако необходимо со всей возможной полнотой подчеркнуть, что при этом речь идет не о возникновении еще одной новой области физики, которая описывается соответствующим новым дифференциальным уравнением, а о новой области физики, модель которой может быть описана и без дифференциального уравнения Шредингера. С этой точки зрения более целесообразно начинать изложение квантово-механической модели в матричной формулировке, в которой она и была открыта Гейзенбергом. Однако из педагогических соображений более предпочтительно рассматривать матричную формулировку после уравнения Шредингера как представление.  [c.9]


Качественное своеобразие микрочастиц, резко отличающее их от частиц классической физики, требует и качественно нового подхода к описанию их движения по сравнению с методами классической механики. Из наличия у микрочастиц волновых свойств следует, что закон движения их должен определяться законом распространения волн де Бройля, связанных с этими частицами. Так как распространение любого волнового процесса описывается волновым уравнением, то следует ожидать, что и движение микрочастиц должно описываться волновым уравнением. Такое уравнение было найдено впервые Шредингером и носит его имя. Для микрочастицы, движущейся в силовом поле и обладающей потенциальной энергией U (х, у, г, t), уравнение Шредингера имеет следующий вид  [c.96]

Волновое уравнение Клейна — Гордона. Уравнение (63) — знаменитое уравнение. Оно превращается в классическое волновое уравнение, когда сОд равно нулю. Его иногда называют волновым уравнением Клейна—Гордона . (Оно справедливо для волн де Бройля в случае релятивистских свободных частиц. См. Д. 2.)  [c.131]

Д.5. Волновое уравнение для волн де Бройля  [c.488]

Волновод прямоугольный 304, 305 Волновое уравнение для волн де Бройля 488  [c.521]

Уравнение Гельмгольца для волн де Бройля. Уравнение Гельмгольца (5.3) описывает волны разнообразной природы в однородных средах и вакууме с постоянной частотой. Постоянство длины волны не предполагается. Поэтому представляется разумным применить это уравнение для описания воли де Бройля, характеризующих волновые свойства корпускул.  [c.65]

Оператор импульса. Для нахождения оператора импульса вспомним, что, согласно гипотезе де Бройля, свободная частица, имеющая импульс р , представляется плоской волной с волновым числом к . = pjh и частотой 03 = //). Поэтому следует потребовать, чтобы уравнение на собственные значения для импульса  [c.111]

В данный момент нас интересует функция (4.1.69), которая определяет фурье-образ плотности индуцированного заряда. Уравнение для этой функции получается из (4.1.74), если положить =р — Нк и выполнить преобразование Фурье. Мы будем считать, что характерное значение волнового числа для внешнего потенциала удовлетворяет неравенству С 1, где Хв = h/p — средняя длина волны де Бройля. Тогда в амплитуде взаимодействия (4.1.72) обменный член может быть опущен, так как р — Pi = hk и р — P2I Запишем теперь уравнение (4.1.74) для  [c.262]


Открытие волн материи де-Бройлем ), матричной механики Гейзенбергом ) и общее волново-механическое дифференциальное уравнение Шредингера ), позволившее установить связь между этими двумя воззрениями, произвели последний, решающий поворот в квантовой теории. Принцип неопределённости Гейзенберга ) и примыкающие к нему принципиальные пояснения Бора ) завершили предварительное построение основ теории.  [c.7]

Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлев-ской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение де Бройля выражение для скорости электрона на первой круговой орбите, найденное из правила кпантования Бора  [c.340]

Во втором методе, предложенном Бриллюэнолг, потенциальная энергия ионов решетки рассматривается как малое возмущение, а в качестве набора волновых функций нулевого приближения берутся плоские волны де-Бройля, являющиеся решением волнового уравнения для свободных электронов (ириближение слабо связанных электронов). Энергия электрона зависит теперь не только от величины волнового вектора, как в соотношении (8.6), но и от его направления. При таком рассмотрении также получаются интервалы энергий, не содержащие собственных значений ( запрещенные зоны ). Возникновение запрещенных зон является следствием наличия разрывов функции, описывающей зависимость энергии от имиульса. Эти разрывы объясняются тем, что через кристалл не могут распространяться электронные волны, волновой вектор которых удовлетворяет условию Брэгга.  [c.324]

Обсуждаются уравнения де Бройля и свойства волн де Бройля. Показывается несостоятель-нсють представления о частице как о волновом пакете.  [c.56]

Принцип локализации входит в неявном виде в асимптотические формулы Дебая, полученные в 1908 г., потому что, как мы увидим ниже, члены с определенным значением п дают асимптотические выражения, содержащие коэффициенты отражения Френеля для определенного угла падения. Понятно, что сам Дебай не останавливается на объяснении этого соответствия между слагаемыми и более или менее локализованными лучами. Однако после развития квантовой механики такой подход стал очень заманчивым, так как он показывает полную аналогию с эффектами, известными в квантовой механике. Волновое уравнение для электрона, сталкивающегося с центром возмущения, — это уравнение Шредингера. Решение имеет вид ряда с целыми значениями квантового числа момента количества движения I. Длина волны де Бройля равна К=к1ть, где т — масса, V — скорость и /г —постоянная Планка. Если считать, что электрон локализован и проходит на расстоянии (I от центра, то момент количества движения //г/2я должен быть равен тьй. Это дает /=й/2я. В действительности точной локализации не наблюдается, но среднее значение (1 равно 1 + - ) 1/2л. Смысл этой  [c.243]

Однако как понимать наличие у электрона волновых свойств Что такое волна де Бройля На эти вопросы ответа не было. В 1925 г. де Бройль ввел в употребление таинственное понятие о волнах материи , описываемых так называемой волновой функцией. В 1926 г, немецкий физик Эрвин Шредингер предложил для волновой функции дифференциальное уравнение, вошедшее в квантовую теорию как уравнение Шредингера . Еще через год в опытах Дэвиссона и Джермера и, независимо от них, П. С. Тарта-  [c.89]

Соответственно, мы приходим к следующему сценарию движения квантовой броуновской частицы. При любом начальном состоянии, в том числе когерентном, частица эволюционирует в соответствии с уравнением Шрёдингера с поглощением, описывающим исчезновение когерентности. На этом фоне возникают коллапсы волновой функции в любом конкретном представителе статистического ансамбля. Первый же коллапс в каждом данном представителе ансамбля уничтожает начальную волновую функцию и порождает волновой пакет с размером Ь л/ЯХв, где Я — длина пробега легких частиц, а Яв — их средняя длина волны де Бройля. Последующие коллапсы дополнительно уменьшают недиагональные члены матрицы распределения, но статистическое поведение броуновской частицы определяется уже не не диагональной частью, а классическим кинетическим уравнением для функции распределения, т.е. диагональной частью матрицы распределения.  [c.211]



Смотреть страницы где упоминается термин Волновое уравнение для волн де Бройля : [c.275]   
Смотреть главы в:

Волны  -> Волновое уравнение для волн де Бройля



ПОИСК



Бройль

Волновое уравнение для волн

Де Бройля волна

Уравнение волновое уравнение

Уравнения волновые

Уравнения де Бройля

Уравнения де Бройля. Плоские волны и фазовая скорость. Волновой пакет и групповая скорость. Несостоятельность гипотезы волнового пакета Экспериментальные подтверждения волновых свойств корпускул



© 2025 Mash-xxl.info Реклама на сайте