Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель — Влияние на свойства

Присадка железа, марганца и никеля, оказывая влияние на фазовые пре- вращения, повышают прочностные и технологические свойства алюминиевых бронз.  [c.218]

Небольшие количества примесей внедрения — кислорода, азота, углерода (для ниобия и тантала — и водорода), а также таких примесей, как кремния, железа, никеля, кальция, серы, висмута и др., оказывают заметное влияние на свойства (и особенно на пластичность) тугоплавких металлов.  [c.393]

Несоосность — Обозначение на чертежах 9 Неуравновешенность — Определение 914 Никель — Влияние на свойство стального литья 115  [c.965]


Вследствие сильного воздействия ядерного облучения на кристаллическую структуру оно оказывает большое влияние на свойства металлов и сплавов. Например, грубо приблизительно, сильное облучение нейтронами увеличивает твердость простых конструкционных сталей на 40%, нержавеющей стали на 100%, никеля на 140%, циркония на 100%.  [c.469]

В работе [254] подробно изучалось влияние никеля, хрома и углерода в сталях типа 18-8 на изменение механических свойств при холодной деформации в очень узких пределах химического состава. Показано, что изменение содержания этих элементов даже в пределах состава, установленного для товарных сортов этой марки, оказывает очень сильное влияние на свойства стали.  [c.307]

Искажение кристаллической решетки железа, увеличивающееся по мере увеличения разницы в атомных размерах, оказывает влияние на свойства феррита. Практически все элементы при содержании больше 1 % снижают ударную вязкость феррита. Исключение составляет только никель.  [c.215]

Все перечисленные элементы, кроме никеля, увеличивая прочность стали, понижают ее пластичность и вязкость. Никель является исключением — он оказывает особенно положительное влияние на свойства стали, увеличивая ее прочность, не понижая пластичность и вязкость. Кроме того, никель понижает порог хладноломкости Поэтому стали, содержащие никель, особенно ценны как конструк ционный материал.  [c.227]

Легированными называются стали, в которых, кроме углерода, существенное влияние на свойства оказывают хром, никель, ванадий, вольфрам, бор, молибден, кремний, марганец и другие элементы, содержащиеся в значительном количестве в стали.  [c.28]

В процессе других испытаний определилось влияние никель-фосфорных покрытий на свойства стали ЗОХГСА как при статическом растяжении, так и при ударном изгибе образцов. Сталь этой марки была избрана для опытов потому, что она находит широкое применение в различных отраслях промышленности для изготовления ответственных и сильно нагруженных деталей.  [c.92]

Какое влияние на свойства стали оказывают легирующие элементы хром, никель, молибден  [c.53]

Введение в сталь легирующих элементов улучшает ее механические свойства. Однако наилучшее сочетание свойств легированные конструкционные стали приобретают после упрочняющей термической обработки. В зависимости от условий работы деталей машин (зубчатые колеса, оси и валы, рессоры и пружины, подшипники и др.) сталь должна обладать тем или иным комплексом механических свойств. Различные стали по-разному удовлетворяют этим требованиям, причем для стали одного и того же назначения могут быть использованы разные легирующие элементы. Увеличение содержания легирующих элементов оказывает положительное влияние на свойства конструкционной стали до определенного предела, например, хрома — до 3%, марганца и кремния — до 1,5—2%, никеля — до 5%, молибдена и вольфрама — до 1—2%. При более высоком содержании легирующих элементов положительное влияние легирования на механические свойства стали уменьшается.  [c.169]


В этом разделе рассматривается влияние на свойства меди примесей, как присутствующих в стандартных марках меди, так и тех, которые могут попасть в медь, например, при использовании вторичных металлов или раскислении. Даны также сведения о влиянии на медь некоторых элементов (селен, теллур), имеющих самостоятельное значение. Данные о влиянии олова, никеля и цинка подробно рассмотрены в разделах, посвященных латуням и бронзам.  [c.8]

Примеси калия, натрия, никеля, меди и железа являются вредными. Отрицательное влияние на свойства магния оказывают также включения окислов и газы, особенно водород.  [c.431]

Никель — Влияние на свойства стального литья 123  [c.546]

Феррит в рассматриваемых сталях оказывает определенное влияние на свойства. Отличаясь более низкой по сравнению с аустенитом пластичностью, он осложняет процесы обработки давлением, способствуя появлению надрывов. В прокатанном металле феррит раскатывается в слои-строчки, обусловливающие анизотропию свойств вдоль и поперек направления проката металла. По сравнению с аустенитом феррит более хрупкая составляющая, поэтому он ухудшает вязкость стали. Он отрицательно влияет на жаропрочность. В связи с отрицательным влиянием феррита на технологические и другие свойства аустенитных сталей его количество регламентируется. Обычно для сохранения удовлетворительной деформируемости допускают его содержание до 25 %. Регулируют количество феррита в основном соотношением содержания в сталях хрома и никеля. Так, стали, содержащие 18 % Сг и 8 % N1, могут иметь в составе структуры от О до 30 % феррита. Стали, содержащие 25 % Сг и 20 % N1, имеют полностью аустенитную структуру.  [c.257]

Это указывает на увеличение количества осадка никеля нли его толщины, а последнее оказывает значительное влияние на свойства стали, хотя сплошность пленки, по-видимому, мало изменяется при увеличении времени выдержки >5 мин.  [c.115]

Некарбидообразующие элементы в сталях (никель, кобальт и кремний) практически полностью растворимы в феррите, аустените и мартенсите, оказывают существенное влияние на свойства и устойчивость этих фаз, характер превращения аустенита при нагреве и охлаждении.  [c.54]

Хромоникелевые стали (табл 1 2). Хром и никель при одновременном их введении оказывают благоприятное влияние на свойства стали Они получают высокую прочность, твердость, достаточную вязкость и пластичность.  [c.9]

Влияние углерода и постоянных примесей на свойства углеродистых сталей. В составе углеродистой стали кроме железа и углерода содержится ряд постоянных примесей кремний, марганец, сера, фосфор, кислород, азот, водород и другие элементы, которые оказывают большое влияние на свойства стали. Присутствие примесей объясняется трудностью их удаления при выплавке (сера, фосфор) или пере.ходом их в сталь при ее раскислении (кремний, марганец) или из шихты (хром, никель).  [c.45]

Обычными примесями в техническом никеле являются кобальт, железо, кремний, медь. Эти примеси не оказывают вредного влияния, так как образуют с никелем твердые растворы. При содержании углерода свыше 0,4% но границам зерен выделяется графит, что вызывает снижение прочности металла. Сера является вредной примесью, образующей с никелем сульфид N 382, который дает с никелем эвтектику с температурой плавления 625°С. Кислород, присутствующий в металле в виде NiO, при малом его содержании не сказывается на свойствах металла.  [c.256]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Формула (31.14) учитывает влияние теплофизических свойств материала поверхности на интенсивность теплоотдачи при кипении криогенных жидкостей (при атмосферном и меньшем атмосферного давлениях) с помощью коэффициента теплоусвоения х. Большие значения коэффициента теплоусвоения имеет медь средние — латунь, никель, бронза малые—нержавеющая сталь.  [c.326]


Внещняя среда оказывает влияние на свойства никеля при высокой температуре и испытании в атмосфере воздуха никель может упрочниться вследствие внутреннего окисления.  [c.162]

Мы изучали поведение углеродных волокон на основе полиак-рилонитрила, покрытых медью и никелем. Покрытия наносили химическим методом, то есть осаждением из растворов солей, при температурах 20 и 80° С для меди и никеля соответственно. Для выбранных нами металлов исключена возможность образования химических соединений при температурах нанесения покрытия [5], а следовательно, и снижение прочностных характеристик углеродных волокон (что подтверждено экспериментально). Поэтому изучалось влияние на свойства металлизированного углеродного волокна температур, близких к технологическим и эксплуатационным. Для этого определяли прочность на разрыв волокон без покрытия после отжига в контакте с металлами. Отжиг проводили в вакууме с давлением 5 Ю мм рт. ст. в течение 24 ч. Предварительно было  [c.129]

Следующей по степени влияния на свойства шлака, является окись натрия NajO. Натрий вносится в нефть с солеными буровыми водами в форме хлоридов и в зависимости от технологии переработки содержание его в мазуте меняется в весьма широких пределах. Соединения натрия легкоплавки и при горении возгоняются. Окислы никеля, кремния и железа, как правило, содержатся в топливе в небольших количествах и влияние этих компонентов на свойства шлака, по-видимому, незначительно [Л. 7-14].  [c.182]

Легирующие элементы, такие как молибден, ванадий, хром, вольфрам, никель, титан и др., оказывают большое влияние на свойства гталей и чугунов. Стали с перечисленными компонентами, прошедшие гпециальную термическую обработку, очень широко применяют в паро-турбостроении.  [c.6]

Несмотря на некоторые предупредительные меры, цветные металлы попадают из шнхты и ферросплавов (а иногда из шлаков и флюсов) в нержавеющую сталь II серьезно ухудшают ее пластичность. М. В. Приданцев и др. [114] объясняют это тем, что цветные примеси, например свинец и его легкоплавкие соединения, располагаются по границам первичных кристаллов в литом состоянии, ослабляют межзеренную связь, вследствие чего при последующей пластической деформации возникают грубые межкристаллитпые трещины. Наиболее отрицательное влияние на свойства сталей при высоких температурах оказывают легкоплавкие примеси, имеющие высокую температуру кипения, некоторую растворимость в жидком состоянии и отсутствие растворимости в твердом. По степени воздействия эти примеси располагаются в следующем порядке висмут, затем свинец, несколько меньшее влияние оказывают сурьма, олово и цинк. Чем больше легирована сталь, особенно никелем, тем меньше в ней должно содержаться свинца.  [c.187]

Автор кратко рассмотрел влияние на свойства жаропрочных сталей и сплавов осгшвных легирующих элементов — никеля и хрома, а также наиболее энергичных аустенитизаторов — азота, бора, углерода. Марганец, как уже отмечалось, в качестве аусте-нитизатора действует примерно вдвое слабее никеля. Поэтому при введении больших количеств марганца в состав жаропрочных сталей рекомендуется одновременно повышать содержание в них углерода или азота. По нашим данным весьма полезен в данном случае и бор. Сам по себе марганец, естественно, не повышает жаропрочности аустенитных сталей. Для максимального упрочнения твердого раствора Fe—Сг—Мп его легируют молибденом, вольфрамом, ниобием, ванадием, титаном [371 в присутствии углерода с азотом. В высокожаропрочных сплавах на никелевой основе содержание марганца обычно сильно ограничивают, например до 0,3—0,5%. Возможно, это связано с относительной легкоплавкостью (см. рис. 78, в) и малой жаропрочностью сплавов системы Ni—Мп. Правда, в последнее время в состав никелевых сплавов типа инконель вводят до 10% Мп [42].  [c.45]

Между тем деформационное старение аустенита может оказывать весьма суш ественное влияние на свойства аустенитных сталей в процессе эксплуатации. Установлено, что явление деформа-дионного старения присуш е как чистым металлам с ГЦК-решеткой — никелю, алюминию, так и некоторым сплавам. Характерным признаком, свидетельствуюш им о протекании процесса деформационного старения, является появление зубцов на диаграмме растяжения а — 8 (прерывистое течение). Связь прерывистого течения с развитием деформационного старения была подробно изучена в работах [2, 3].  [c.5]

Впервые бериллий вызвал интерес в начале тридцатых годов НЕшего века как легирующий компонент в ряде сплавов. Бериллий оказынает весьма благоприятное влияние на свойства меди, никеля, магниевых сплавов. Б итоге производство бериллия, составлявшее в 1925 г. всего несколько килограммов, достигла в годы второй мировой войны порядка 10 т. Однако вопрос о применении бериллия как конструкционного материала не возникал, поскольку он обладал исключительной хрупкостью.  [c.450]

По данным [4—6], атомарный водород, выделяющийся на катоде сов1местно с никелем, принимает также участие в формировании структуры осадков никеля, оказывая влияние на их внешний вид и физико-механические свойства. В работе [4] показано, что водород, попадающий в осадок никеля в виде адсорбированных гидроокисей основных солей и молекул органических соединений, оказывает большое влияние на механические свойства катодного никеля — увеличиваются внутренние напряжения и твердость, резко ухудшается пластичность осадков. Водород, включающийся в осадок никеля в молекулярной форме, не оказывает влияния на его механические свойства.  [c.277]

Большое влияние на свойства. металла сварных швов оказывает содержание в нем серы. Она обладает большим химическим сродством к никелю. Особенпо это заметно при температурах выше 400° С, когда в течение короткого времени возникает сульфид нпкеля, образующий с никелем при 645° С легкоплавкую эвтектику, которая содержит 21,5% серы. Она располагается вдоль границ зерен металла и охрушшвает его. Практически пластичность никеля исчезает полностью. Особенно чувствителен к сере чистый никель. Глубина и скорость проникновения серы в никель зависит от температуры. Температура до 400° С рассматривается как граница, в пределах которо1"1 заметного проникновения серы в никель не наблюдается. Сульфид нпкеля может образоваться, еслп с никелем соприкасаются материалы, которые содержат даже небольшие количества серы (горючие материалы, масло, жиры, краски и т. п.).  [c.181]


Таким образом, алюминий оказывает положительное влияние на свойства никеля и его сплавов, так как повышает механические и технологические свойспва этих сплавов. Алюминий не испаряется при высоких температурах, потому что парциальное давление паров алюминия доспигает атмосферного лишь при температуре около 2000°С, что Ихмеет особо важное значение при работе деталей радиоламп при повышенных температурах в условиях высокого вакуума.  [c.283]

Механические свойства покрытия Ваттса из обычных чистых растворов зависят от состава, pH, плотности тока и температуры раствора. При промышленном применении эти параметры специально варьируют для того, чтобы получить определенное качество покрытий твердость, прочность, пластичность и внутренние напряжения. pH раствора имеет незначительное влияние на свойства покрытия в пределах значений 1,0—5,0. Однако при увеличении pH выше 5,5 твердость, прочность и внутренние напряжения резко возрастают, а пластичность падает при рН = = 3 получается пластичное покрытие с минимальными внутренними напряжениями при температуре 50—60° С и плотности тока 3—8 Л/дм2 в растворе хлорида никеля с 25 /о иона никеля. Такой осадок имеет грубозернистую структуру в то время, как более твердые и прочные осадки, полученные при других условиях процесса, имеют более тонкое зерно. Широкое изучение взаимосвязи параметров процесса со свойствами покрытий было проведено в американском Обществе по электролитическим покрытиям и результаты для раствора Ваттса и др, сообщались в 1952 г, [3, 4],  [c.439]

Все эти бронзы не расслаиваются, не слишком хрупки, имеют достаточные предел упругости на сгкатие и твердость. Вообще эти бронаы имеют по данным авторов этой работы (проф. Славинского и его сотрудников) нужное для антифрикционных сплавов строение и прочность, но для окончательного суждения об их антифрикционности необходимы испытания на трение и износ, необходимо определить их поведение в эксплоатации, как это и указывают вышеупомянутые авторы. При анализе таких бронз (в исследовательских институтах Союза ССР) в них находили кроме меди, свинца, никеля и олова еще небольшие количества цинка, алюминия, сурьмы, железа, серы и некоторых других элементов. Может быть, некоторые из этих веществ являются случайными примесями, может быть, некоторые из них умышленно вводились (например сера). Богатые свинцом оловянно-свинцовые бронзы являются хорошими антифрикционными материалами. В табл. 31 представлено влияние на свойства Си — 8п бронаы (с 5 и 10% 8п) одного свинца и одновременно свинца и никеля, а на бронзы Си— 8п с 10% 8п — одного никеля.  [c.422]

Железо при комнатной температуре практически нерастворимо в алюминии и присутствует в нем в виде самостоятельной фазы (А1эРе). В жаропрочных алюминиевых сплавах железо в сочетании с никелем оказывает положительное влияние. В большинстве же случаев железо относится к вредным примесям в алюминии. Кремний иа механические и физико-химические свойства алюминия влияет так же, как и железо. Значительное влияние на свойства ряда алюм1и1ниевых сплавов оказывают даже не-  [c.354]

Дополнительное легирование никелем (1,4—1,8 %) повышает прокаливаемость и прочность хромомарганцевых сталей. Так, механические и технологические свойства менее легированных хромомарганцевых сталей 18ХГН и 15ХГНТ приближаются к хромоникелег вым сталям. Благоприятное влияние на свойства цементуемых сталей оказывает также молибден (0,2—  [c.217]

С целью определения влияния легирования на свойства покрытий, получаемых из синтезированных дисперсных материалов, проведены исследования некоторых экснлуатационных характеристик покрытий системы никель-алюминий-легирующий элемент.  [c.62]


Смотреть страницы где упоминается термин Никель — Влияние на свойства : [c.189]    [c.174]    [c.240]    [c.323]    [c.106]    [c.387]    [c.294]    [c.403]    [c.124]    [c.884]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.0 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.0 ]



ПОИСК



141 — Влияние на свойства

Влияние никеля

Никель

Никель — Свойства



© 2025 Mash-xxl.info Реклама на сайте