Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводниковые материалы и приборы

Полупроводниковые материалы и приборы заметно повреждаются реакторным излучением дозой в 10 нейтрон/м . Многие диэлектрики обладают значительно большей радиационной стойкостью, выдерживая дозы до 10 нейтрон/м .  [c.164]

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ И ПРИБОРЫ  [c.244]

Получение высококачественных полупроводниковых материалов и создание на их основе микроэлектронных приборов привело во второй половине XX в. по сути к революции в технике, поскольку позволило использовать мощные, но миниатюрные вычислительные системы и автоматизацию не только в произ водстве и различных областях человеческой деятельности, но и в быту. Миниатюризация функциональных элементов микроэлектроники и увеличение их производительности требуют все более высокого качества материалов и новых технологий изготовления элементов из них. Эти новые автоматизированные технологии (нанотехнологии) уже не могут работать без оборудования с широким применением микроэлектронных приборов, которые как раз и создаются с использованием этих технологий. Если не принимать во внимание технологии конструкционных материалов и сборку различных механизмов, многие из которых тоже автоматизированы, а также некоторые операции транспортировки и экономические аспекты полной автоматизации, то можно считать, что мы уже живем в том веке, когда механизмы производят сами себя.  [c.646]


Полупроводниковые материалы п- и р-типа широко используются при изготовлении полупроводниковых приборов.  [c.156]

Диапазон изменения электросопротивления у полупроводниковых материалов весьма широк (р = 10 - - 10 ом-см) однако материалы характеризуются некоторыми другими специфическими свойствами, отличающими их от металлов и изоляторов, Например, если электросопротивление металлов возрастает с повышением температуры, то у полупроводниковых материалов оно падает, т. е. полупроводники в большинстве случаев обладают отрицательным температурным коэффициентом электросопротивления примеси уменьшают электропроводность металлов, но увеличивают проводимость полупроводниковых материалов. Полупроводники обладают фотопроводимостью, т. е. при действии излучений у них возникают дополнительные свободные носители заряда. В приборной технике полупроводники нашли широкое применение, поскольку они могут служить выпрямительными элементами, генерировать огромные термо-э. д. с., усиливать ток, позволяют увеличить ресурс и надежность электронных устройств, уменьшить размеры и вес приборов, а также сократить потребление электрической энергии.  [c.279]

Термометры сопротивления, изготовленные из полупроводниковых материалов, применяют как образцовые средства измерения температур в интервале от 1,5 до 273,15 К. Эти приборы имеют доверительную погрешность Д=0,01 К (при доверительной вероятности Р=0,95) в интервале от 1,5 до 13,81 К и Д—0,05 К в интервале от 13,81 до 273,15 К. Полупроводниковые термометры сопротивления являются рабочими средствами измерения температуры в интервале от 1,5 до 573 К и имеют предел допускаемой погрешности 0,1—2,0 К.  [c.112]

Основные области применения полупроводниковых материалов 1) выпрямительные и усилительные приборы разной МОЩНОСТИ на разные частоты неуправляемые и управляемые — диоды, транзисторы, тиристоры 2) нелинейные резисторы-варисторы 3) терморезисторы 4) фоторезисторы 5) фотоэлементы 6) термоэлектрические генера,-  [c.276]

Эффект Холла интересен не только как метод определения характеристик полупроводниковых материалов, но и как принцип дейст-вия целого ряда полупроводниковых приборов, нашедших техническое применение.  [c.280]

Полу проводниковая электроника использует свойства кристаллической решетки веществ, перемещение и распределение зарядов под действием электрических и магнитных полей внутри кристалла. На основе этого созданы разнообразные полупроводниковые приборы — диоды и транзисторы различного назначения, позволяющие уменьшить вес и габариты аппаратуры, увеличить ее долговечность и надежность. Открытие и разработка новых полупроводниковых материалов способствует дальнейшему развитию радиотехники.  [c.4]


Дальнейшее развитие электроники твердого тела позволило перейти от дискретных полупроводниковых приборов к созданию и серийному производству узлов электронной аппаратуры и схем, устройств и приборов в целом. Это прогрессивное направление техники получило название микроэлектроники. Научной задачей, решаемой с помощью микроэлектроники, является создание сложнейших кибернетических систем для использования в народном хозяйстве, для освоения космоса, для исследований в области биологии и медицины. Техническая задача микроэлектроники сводится к дальнейшему сокращению размеров и массы электронной аппаратуры, увеличению плотности монтажа при одновременном повышении ее долговечности и надежности. Осуществить это возможно только на основе резкого сокращения затрат мош,ности в электронных схемах на полупроводниковых элементах. Экономическая задача микроэлектроники заключается в существенном сокращении потребности в материалах, трудоемкости и капитальных вложений в производство электронной аппаратуры н приборов, в перевозку деталей и аппаратуры, а также в снижении энергетических затрат при ее производстве и эксплуатации.  [c.231]

Для исследования возможностей метода оптической ИК интроскопии и для испытания прибора, реализующего этот метод, была проведена серия исследований на различных тест-объектах, а также на образцах полупроводниковых материалов германия п- и р-типа электропроводности, электронного и дырочного кремния, фосфида галлия, как нелегированного так и легированного Те, S, Mg, Be, и арсенида галлия, легированного Те до Л д = 5--ь  [c.184]

Одним из таких нестационарных методов измерения коэффициента теплопроводности полупроводниковых материалов является метод, предложенный в 1952 г. А. В. Иоффе и А. Ф. Иоффе [5]. Этот метод рассчитан на измерение теплопроводности вблизи комнатной температуры в узком интервале температур (10—15° С). Схема прибора изображена на рис. 1. Прибор состоит из двух медных блоков / и J, между которыми поме-ш,ается исследуемый образец 2. Нижний блок вводится в среду с постоянной и более низкой температурой г по сравнению с температурой верхнего блока г, . Для уменьшения теплообмена верхнего блока с окружающей средой он закрывается наружным цилиндром 4, температура которого поддерживается все время близкой к температуре верхнего блока. Измерение температуры верхнего блока с известной теплоемкостью позволяет рассчитать искомую величину коэффициента теплопроводности исследуемого образца.  [c.20]

Для того чтобы выяснить характер влияния всех перечисленных факторов на точность измерения )-2, по предложению акад. А. Ф. Иоффе нами были проведены теоретический анализ и оценка погрешностей метода с учетом реальных условий, имеющих место в экспериментальной установке, и в соответствии с полученными выводами этого анализа разработаны приборы для скоростных измерений коэффициента теплопроводности полупроводниковых материалов.  [c.22]

В тех случаях, когда требуется знать температурный ход коэффициента теплопроводности полупроводниковых материалов, а также более точно определить величину измерения проводятся на установке, представленной на рис. 8. Конструкция установки построена на том же принципе, что и прибор для измерения /-a при комнатных температурах, но приведена в соответствие с условиями измерения величины коэффициента теплопроводности в вакууме при различных температурах. В этом случае резко уменьшается методическая ошибка измерения величины /-а за счет исключения тепловых потерь, обусловленных теплопроводностью воздуха и конвективным теплообменом, а потери на излучение при малых перепадах температуры на образце малы и составляют небольшую долю от теплообмена в воздухе.  [c.32]

Для комплексного исследования теплоемкости и коэффициента а твердых тепло-изоляторов (пластиков, огнеупоров) и полупроводников в режиме монотонного разогрева образцов в диапазоне температур от 50 до 900° С разработан прибор ДК-ас-900, представляющий собой техническую реализацию метода трубки [109]. Погрешность измерений 5—8%. Для независимых измерений коэффициентов а и Л твердых полимерных и полупроводниковых материалов, теплопроводность которых не превышает 10 Вт/(м-°С), в режиме монотонного разогрева образцов в интервале температур от —100 до - -400°С разработан прибор ДК-а .-400, представляющий собой объединение двух калориметров, один из которых приведен выше [см. рис. (5-17)]. Погрешность измерений не превышает 3—5% [Ю9]. Универсальный прибор ДК-асЯ,-400 (рис. 5-22), предназначенный для комплексного исследования теплофизических свойств материалов в монотонном режиме [109], является объединением трех калориметров, два из которых приведены выше [см. рис. (5-17) и (5-19)].  [c.317]


По возможности применения полупроводниковые материалы могут рассматриваться и как материал, и как полупроводниковый прибор, готовый к практическому использованию. Критерием для отнесения продукции к материалу или прибору является характер потребительских свойств, которые могут быть материаловедческими (химический состав, структура, физико-химические свойства) или приборными (вольт-ам-перная характеристика, пробивное напряжение и др.).  [c.379]

Кремний является основным материалом для производства полупроводниковых приборов выпрямительных, мощных и маломощных биполярных транзисторов, полевых транзисторов и приборов с зарядовой связью. Кремний применяют также для создания детекторов ядерных излучений, датчиков Холла и тензодатчиков. Достаточно большое значение ширины запрещенной зоны позволяет кремниевым приборам работать при температурах до 180...200 С.  [c.379]

Серьезную конкуренцию наноэлектронике, основанной на использовании традиционных неорганических полупроводниковых материалов, в решении задач создания сверхминиатюрных и сверхбыстродействующих электронных устройств может составить молекулярная электроника. Как показывают исследования последних лет, индивидуальные молекулы ряда ароматических органических веществ, биомолекулы и углеродные нанотрубки обладают электрическими свойствами, которые, как считалось ранее, характерны только для объемных полупроводников. Они являются прекрасными проводниками электрического тока и могут использоваться в качестве переключателей при плотностях тока в миллионы раз больших, чем традиционная медная проволока. На их основе можно создавать мономолекулярные диодные переключатели, молекулярные полевые транзисторы и ряд других приборов. С использованием явлений самоорганизации на основе такого рода молекул можно формировать логические интегральные схемы и схемы памяти, рабочие напряжения в которых намного меньше, чем в традиционных полупроводниковых аналогах.  [c.113]

Инициированные Р. д. изменения свойств материалов нередко затрудняют их практич. использование. Так, изменение механич. свойств, однородности состава и геом. размеров коеструкц. элементов ограничивает срок работы ядерных реакторов. Особенно сильно влияет радиация на полупроводниковые материалы и приборы. В силу высокой чувствительности электрвч. характеристик полупроводников к появлению малой концентрации Р. д. облучение полупроводников даже при низких дозах радиации может сопровождаться существ, изменениями параметров полупроводниковых приборов.  [c.204]

Полупроводниковые материалы. В течение последних лет ведутся интенсивные поиски способов получения тончайших защитных пленок на поверхности полупроводниковых пластин и приборов. Теоретические расчеты показали, что такие пленки должны иметь высокое удельное электросопротивление, эффективную маскирующую способность и обеспечивать стабильность параметров полупроводниковых приборов. Проведенными в Институте опытами установлено, что методом осаждения стеклообразователей из раствора можно получить пленку стекла толщиной 0.1 —1.0 мк, которая обладает удельным электрическим сопротивлением 10 —10 ом-см, эффективной маскирующей способностью в процессе внедрения диффузантов, устойчивостью во влажной атмосфере, высокой термостойкостью, растворимостью в обычных травителях и характеризуется хорошей адгезией с использованием для фотолитографии резистом. Процесс получения пленок из раствора более производителен и осуществляется при более низкой температуре, чем процесс термического оплавления кремния. Метод получения пленок применяется при изготовлении приборов по планарной технологии.  [c.8]

Уменьшить коррозию можно также посредством замедления другой реакции, лежащей в основе коррозионного процесса, а именно—анодной. Для этого необходимо из состава воды удалить те анионы, которые образуют с железом и другими металлами хорошо растворимые соединения и облегчают анодное растворение. Таковыми являются в основном хлориды и сульфаты. В последнее время в связи с совершенствованием техники обеосоливания воды этот метод борьбы с коррозией стал технически осуществим и экономически оправдан. Он применяется при гидроиспытаниях сложнейшей аппаратуры и приборов, когда остатки солей могут отрицательно сказаться на дальнейшей работе аппаратуры, а также в процессе подготовки воды для электростанций, нужд пищевой промышленности, производства нскуоственных волокон и т.д. Обессоленная вода в сочетании с деаэрацией также находит применение в охладите.льных системах ускорителей, где требуется высокое удельное сопротивление (р>10 Ом-см), а также в электровакуумной промышленности при производстве полупроводниковых материалов и т. д.  [c.254]

Оно осуществляется методом диффузии примеси из внещней газовой, жидкой или твердой фаз, методом радиационного легирования и методом ионной имплантации. Метод диффузии в технологии производства объемных легированных материалов не получил распространения из-за малых скоростей диффузии в кристаллах. Тем не менее сами процессы диффузии играют больщую роль в технологии получения и обработки полупроводниковых материалов и создании приборов на их основе. Рассмотрению этих процессов посвящена гл. 8.  [c.264]

Рекомендуемая область применения различные детали приборов, матрицы штампов, прессформы, фильеры, прорезка щелей и пазов, изготовление масок и трафаретов, разрезание полупроводниковых материалов и др.  [c.163]

Наибольшее значение получили сплавы Ge и Se в различных сочетаниях, поскольку при этом возникают смежные области с разными типами электропроводности(ц-типаили р-типа), а граница этих областей п-р (р-п или р-п-р и т. д.)-переход является основой полупроводниковых приборов. Такие композиции можно получать лишь путем легирования полупроводниковых материалов высокой чистоты дозированным количеством соответствующих примесей (10 —Ю %).  [c.389]

Кроме элементарных полупроводниковых материалов, находят применение полупроводниковые соединения, получаемые путем сплавления или химической обработки чистых элементов СпО (для полупроводниковых выпрямителей), SbZn (для полупроводниковых термобатарей), РЬТе (для фотоэлектрических приборов и термоэлементов) и др.  [c.389]


К первой группе относятся нефть, газ, уголь и другие полезные ископаемые, ко второй группе - бензин, смазочные масла, прокат, химические продукты, строительные материалы и т. п. В третью группу входят аптекарские, парфюмерные товары в промышленной упаковке, газы в баплонах, провода в катушках и т, п., т. е. единицы промышленной продукции в специальной упаковке, количество которой исчисляется в килограммах, метрах и др. Четвертая группа объединяет шестерни, болты, гайки, полупроводниковые приборы, конденсаторы и т. п., а пятая—  [c.138]

Германий является одним из первых полупроводниковых материалов, получивших широкое практическое применение в серийном производстве различных полупроводниковых элементов. Его используют для изготовления выпрямительных и импульсных диодов, самых различных видов тиристоров, фотодиодов, фоторезисторов, фототранзисторов, детекторов инфракрасного излучения, тиристоров, счетчиков ядерных частиц, тензометров и т. д. Диапазон рабочих те,мпсратур этих приборов от - 60 до +80" С.  [c.77]

В авиационной технике полупроводниковые материалы используют в приборах для генерации и усиления электрических сигналов и выпрямления переменного тока (диоды) и в качестве фотосопротивления и фотодиодов. Термоэлектрические свойства полупроводников позволяют применять их в качестве термосопротивлений, термоэлементов, термостабилизаторов и при создании солнечных батарей. Магнитные свойства полупроводниковых материалов (окислы металлов переходных групп, соединения металлов с серой, теллуром и селеном) позволяют применять их при изготовлении малогабаритных антенн, транс-  [c.279]

Общие представления. Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения. Кроме того, роль примесей играют всевозможные дефекты кристаллической решетки пустые узлы, атомы или ионы, оказавшиеся в междоузлиях решетки, дислокации или сдвиги, возникающие при пластической деформации кристалла, микротре-дины и т. д. (стр. 12). Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях — примесями внедрения.  [c.233]

В результате экспериментов, проведенных на образцах стали и полупроводниковых материалов было, например, показано, что число случаев с одинаковыми величинами диагоналей отпечатков индентора при подсчете их с помощью количественного телевизионного микроскопа, как правило, в два раза больше, чем при измерении на ПТМ-3. Средние значения диагоналей отпечатков индентора, полученные при измерениях на приборах ПТМ-3 и Квантимет-720 , отличаются на небольшую величину, которая для выбранного материала образцов и увеличения объектива является постоянной. Различие в размерах диагоналей отпечатков, получаемое при повторных измерениях с помощ,ью анализатора изображения, не превышает 1,5—2%.  [c.288]

Один из вариантов реализации метода ИК интроскопии заключается в просвечивании объектов исследования ИК излучением и визуализации прошедшего через объект излучения с помощью электронно-оптического преобразователя или телевизионной системы [40, 226]. Примером подобного прибора является микроскоп МИК-1, позволяющий осуществлять видение в таких полупроводниковых материалах, как Si и GaAs, выявлением дефектов в объеме полупроводника. Однако использование в качестве источника излучения широкополосных тепловых излучателей значительно ухудшает качество изображения и затрудняет количественную интерпретацию получаемой информации.  [c.181]

Успешное решение этой задачи возможно лишь при наличии полупроводниковых материалов, сочетающих в себе нагревостой-кость и высокие электрофизические характеристики. Из таких материалов наиболее перспективны полупроводники с широкой запрещенной зоной — фосфид галлия и карбид кремния. Получение этих материалов связано с рядом технических трудностей, обусловленных высокой температурой плавления и невозможностью получения расплава при нормальном давлении. Поэтому фосфид галлия и карбид кремния в виде монокристаллов полупроводниковой чистоты известны сравнительно недавно. Тем не менее за последнее десятилетие достигнуты значительные успехи в технологии получения этих материалов, в разработке полупроводниковых приборов на их основе.  [c.45]

Перечень исходных материалов, которые были использованы для создания автоэлектронных катодов, достаточно широк. Это, в первую очередь, тугоплавкие металлы вольфрам, молибден, рений, платина. Также широко исследовались автоэмиссионные свойства металлов переходных групп, таких, как хром, ниобий, гафний. Бесчисленное множество публикаций посвящено автоэмиссии и автокатодам из полупроводниковых материалов. Однако автокатоды из таких материалов не могут длительное время работать в условиях серийных приборов (р 10 -ь 10 мм рт. ст.) т. к. происходит разрушение микро-вытупов, определяющих автоэмиссию с рабочей поверхности катода.  [c.6]

Рис. 2. Прибор для теплофнзнческих испытаний теплоизоляционных и полупроводниковых материалов в интервале 20-400"С Рис. 2. Прибор для теплофнзнческих испытаний теплоизоляционных и полупроводниковых материалов в интервале 20-400"С
На рис. 2 показана фотография прибора для измерений коэффициентов теплопроводности и температуропроводности теплоизоляционных и полупроводниковых материалов в интервале температур 20—400°С. Прибор имеет настольное оформление, состоит из калориметрического устройства I для измерений коэффициента теплопроводности (л-калориметра), калориметрического устройства 2 для измерений коэффициента температуропроводности (а-калориметра) и измерительного пульта 3. В приборе предусмотрены испытания при трех режимах разогрева образца с примерными скоростями 3, 6 и 9° в минуту. Испытуемые образцы выполняются в виде дисков диаметром не более 20 мм. При испытаниях на теплопроводность требуется один образец толщиной 0,5—3,0 мм, а на температуропроводность —два одинаковых образца толщиной 3— 6 мм. Прибор пригоден для исследования материалов с теплопроводностью не более 0 вт-м -град , т. е. для полупроводников, твердых теплоизоляторов, пластмасс, резины, тканевой и листовой изоляции, а также трудноиспаряемых жидкостей. Последние при этом должны заливаться в специальную кювету.  [c.6]

Прибор для скоростных широкотемпературных теплофизических испытаний теплоизоляционных и полупроводниковых материалов (динамический аХ-калориметр). — Известия вузов. Приборостроение , 1961, т. IV, № 5, с. 119—126.  [c.328]

По происхождению вещества они могут быть органическими и неорганическими. Органические полупроводниковые вещества (антрацен, полиакрилонитрил, индиго и др.) отличаются высокой радиационной стойкостью и широко используются для изготовления термисторов, пьезоэлементов, детеьсгоров инфракрасного излучения и других приборов. Более широкое применение получили неорганические полупроводниковые материалы.  [c.378]


AM A M Микропорошк1 Нормальная абразивная способность 1 Доводка и полирование деталей машин и приборов из закаленных сталей, сплавов и керамики, стекла, полупроводниковых материалов  [c.628]

Развитию элементной базы твердотельной электроники уделяется большое внимание во всех передовых странах мира. Только в 1996 г. мировое производство полупроводниковых приборов в денежном исчислении превысило 160 млрд долларов, а в 2000 г. оно составило уже около 300 млрд долларов. Ежегодно в развитие этой области науки и техники вкладываются миллиарды долларов. Достижения физики, фи-зикохимии и технологии полупроводниковых материалов, а также полупроводникового материаловедения в значительной степени определяют прогресс в развитии твердотельной электроники. Наша страна традиционно занимала (и занимает сейчас) ведущие позиции в материаловед-ческой науке и располагает высококвалифицированными научными и инженерными кадрами, которые способны на современном уровне решать самые сложные научно-технические задачи развития технологии производства полупроводниковых материалов.  [c.38]

В данном случае речь идет о создании огромных (10 ...10 атомов), стабильных во времени молекул из обьшных неорганических полупроводниковых материалов, размеры и характер распределения которых в будущей приборной структуре должны воспроизводиться с высокой точностью. Возникающие при этом принципиальные сложности вряд ли нуждаются в дополнительных комментариях. Однако успешное решение такого рода проблем - это прямой путь к созданию новых классов так называемых одноэлектронных и резонансно-туннельных приборов, а также уникальных по своим характеристикам инжекционных лазеров [24, 25].  [c.87]


Смотреть страницы где упоминается термин Полупроводниковые материалы и приборы : [c.2]    [c.11]    [c.257]    [c.157]    [c.109]    [c.141]    [c.521]    [c.43]    [c.348]    [c.358]    [c.139]   
Смотреть главы в:

Металловедение  -> Полупроводниковые материалы и приборы



ПОИСК



Л полупроводниковый

Материалы полупроводниковые

Полупроводниковые материалы ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

Приборы полупроводниковые



© 2025 Mash-xxl.info Реклама на сайте