Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схемы для измерения Пр при высокой частоте

Схема компенсационной установки для измерения емкости двойного электрического слоя изображена на рис. 117. Метод состоит в сообщении поверхности металла и раствору некоторых малых количеств электричества AQ и —AQ и вычислении изменения потенциала электрода АУ и емкости. Чтобы электричество не тратилось на электрохимические реакции, при работе используется переменный ток высокой частоты.  [c.166]


Особенностью усилителя высокой частоты является требование малого времени Ту восстановления чувствительности после воздействия зондирующего импульса (в случае включения преобразователя по совмещенной схеме). На входе (или вблизи входа) усилителя включают калибровочный аттенюатор 5 для относительного измерения амплитуд эхо-сигналов.  [c.229]

Применение ультразвуковых методов для композиционных материалов из-за сильного затухания упругих волн возможно только при условии снижения частоты в области ниже 1 мГц. Для крупногабаритных конструкций и изделий с толщиной свыше 50—100 мм частотный диапазон в зависимости от типа материала и контролируемого параметра должен находиться в области 50—500 кГц. При контроле физико-механических характеристик для повышения точности измерений необходимы малое затухание и высокая крутизна переднего фронта упругой волны. Однако малое затухание можно получить только на низких частотах (20—200 кГц), а высокую крутизну переднего фронта — на высоких частотах. При контроле дефектов снижение частоты приводит к снижению чувствительности и разрешающей способности, увеличению длительности сигнала (мертвой зоны), а повышение частоты уменьшает диапазон контролируемых толщин. Таким образом, применение ультразвуковых методов для композиционных материалов выдвигает ряд новых требований, осуществление которых приведет к изменению методики контроля, конструкции преобразователей и принципиальных электрических схем приборов. К этим требованиям относятся  [c.85]

Измерительная схема включает в себя два германиевых диода типа Д2Г, переменные сопротивления Re, — для грубой установки нуля и — Для точной установки нуля, а также резонансную катушку La, которая является измерительным датчиком. Напряжение высокой частоты снимается со вторичной обмотки трансформатора. Разность токов при измерении покрытия отмечается индикатором Я, по показанию которого отсчитывается соответствующая толщина покрытия. В качестве индикатора использован микроамперметр на 300 мт, зашунтированный диодом типа ДГЦ-24. Переключатель /7 служит для переключения полярности индикатора при измерении покрытий, имеющих магнитную проницаемость [i< 1.  [c.63]

На фиг. 8, г приведена схема термопреобразователя внутреннего управления. Подвижной электрод Э механотрона укреплен на эластичной пружинке Я, служащей для натягивания проволоки Н, по которой пропускается измеряемый ток. Удлинение последней в процессе измерения сопровождается соответствующим перемещением подвижного электрода механотрона, дающим на выходе лампы сигнал, характеризующий значение измеряемого тока высокой частоты.  [c.133]


Для измерения распределения капель жидкости с низкой проводимостью и при больших скоростях потока (до 180 м/с) А. С. Федоровым [147, 148] предложена схема с высокочастотной коррекцией (рис. 2.18). Постоянное напряжение or источника подается во входную часть измерительной схемы. При замыкании электродов движущейся каплей в первичной обмотке трансформатора возникает ток. Импульс со вторичной обмотки поступает на вход импульсного усилителя. Усилитель имеет подъем частотной характеристики в диапазоне от 0,1 до 20 МГц. Выходное напряжение усилителя приобретает вид импульсов длительностью 1,5 МКС. Резистор R в этой схеме служит для регулировки полосы пропускания контура, образованного первичной обмоткой трансформатора и паразитной емкостью. Частотная характеристика трансформатора практически равномерна в диапазоне от 0,1 до 30 МГц. Схема обеспечивает эффективное подавление помех, спектр которых является более низкочастотным. В то же время из-за подъема частотной характеристики на высоких частотах, в области которых находится спектр полезного сигнала, амплитуда полезных импульсов увеличивается. При этом уменьшается число потерянных импульсов от капель малого размера, связанное с влиянием паразитной емкости. Скорость счета импульсов определяется с помощью счетчика.  [c.48]

Равновесие достигается регулировкой со- противлении Яс и Я< Яо и Яз-Для высоких частот (десятки мегагерц) применяют специальные мостовые схемы (Г-об-разные мосты). Преимущество таких схем — возможность заземления входной и выходной цепей, что облегчает экранировку элементов схемы. На рис. 17.34,6 представлен Т-образный мост для измерения индуктивного сопротивления. В условиях равновесия, когда сила тока, проходящего через нуль-прибор (НП), равна нулю  [c.298]

Рис. 9.15. Измерения с пробными импульсами при высокой частоте следования импульсов возбуждающего и пробного лазеров. (По [9.36].) а — схема установки РМ — фазовый модулятор. Рис. 9.15. Измерения с пробными импульсами при высокой <a href="/info/422672">частоте следования импульсов</a> возбуждающего и пробного лазеров. (По [9.36].) а — схема установки РМ — фазовый модулятор.
На низких частотах из-за резонансов камеры диффузность поля получается хуже, чем на высоких, поэтому измерения на частотах ниже 100 Гц дают повышенную ошибку измерений. У этого типа камеры звукоизоляция ниже, чем у заглушенной камеры, примерно на 25 дБ [см. (7.25)], но для измерений в диффузном поле этого достаточно, так как проникающие шумы не превышают 40 дБ. В звукомерных камерах размещают только измерительный микрофон и по мере надобности испытуемый микрофон и измерительный громкоговоритель или испытуемый громкоговоритель. Всю остальную измерительную аппаратуру располагают в аппаратной, изолированной от камеры. Измерительные громкоговорители работают от соответствующих генераторов. Так как практически самый лучший громкоговоритель имеет неравномерность частотной характеристики не менее 6 дБ, то обычно применяют автоматическое регулирование чувствительности громкоговорителя с тем, чтобы развиваемое им звуковое давление во всем измерительном диапазоне частот не отклонялось от заданного более чем на 2—3%. Схема авторегулятора показана на рис. 11.2. Для регулировки применяют измерительный микрофон с усилителем, подключаемый к авторегулятору. При изменении звукового давления, создаваемого громкоговорителем, авторегулятор изменяет напряжение на громкоговорителе так, чтобы звуковое давление осталось прежним. Тот же измерительный микрофон входит в состав измерителя звукового давления, дающего возможность отсчета звукового давления непосредственно в паскалях или децибелах.  [c.249]

Кроме вышеперечисленных, разработано большое число Государственных первичных и специальных эталонов и государственных поверочных схем, обеспечивающих единство измерений таких электрических величин, как углы сдвига фаз, коэффициент нелинейных искажений, электрические токи, напряжения и полные сопротивления в области высоких частот, напряженность электрического поля, мощность электромагнитных колебаний и многие другие.  [c.81]


Для измерения силы тока высокой частоты можно воспользоваться амперметрами с термопреобразователями типов Т-14 и Т-18. Для измерения электрической мощности разработаны схемы ваттметров, работа которых основана на использовании нелинейных характеристик некоторых преобразователей. В качестве таких преобразователей используются диоды, вакуумные термопреобразователи и т. п. Такие преобразователи использованы в ваттметрах типов ЭВ-1, ВУЧ-2, Т-141 [19 и др.]. Ваттметр типа Т-141 имеет значительную инерционность и не позволяет выявить потребление энергии преобразователем в процессе сварки, который протекает, как правило, доли секунды. Для этой цели более целесообразно использовать датчики Холла . Такой датчик может быть использован в качестве перемножающего устройства действующих значений тока и напряжения. Схема измерения мощности типовым ваттметром показана на рис. 62.  [c.105]

Катодный осциллограф регистрирует процессы, протекающие со скоростью до —10 сек. Так, с помощью измерительной схемы с катодным осциллографом показано, что время образования кристаллика мартенсита (структуры закаленной стали) составляет 3- 10 сек. Широкое применение весьма быстрого индукционного нагрева с использованием токов высокой частоты выдвинуло сложную техническую задачу создания установок, позволяющих измерять температуру при нагреве с весьма высокими скоростями. Для этого были сконструированы специальные фотоэлектрические пирометры, работающие по принципу измерения фототоков, возникающих при падении теплового и светового потока от нагреваемого изделия на чувствительный фотоэлемент. Обычно фотоэлектрический пирометр через специальные усилители (учитывая малую величину фототоков) подключается к осциллографам.  [c.30]

Индуктивными датчиками снабжены самопишущие электрические приборы для линейных измерений. Катушки обычно включаются в мостовую схему другие ее плечи представляют собой ветви вторичной обмотки входного дифференциального трансформатора, который получает стабилизированное напряжение от генератора высокой частоты (обычно 3—5 кГц). В диагональ моста через фазочувствительный выпрямитель включается электроизмерительный прибор, проградуированный в линейных величинах.  [c.127]

Измерения е и 10 б при высоких частотах в основном производят двумя методами — мостовыми и резонансными. Ввиду сильного влияния паразитных параметров (дополнительных емкостей, индуктивностей и сопротивлений) стремятся, как правило, проводить измерения дважды с образцом и без образца с тем, чтобы исключить по возможности влияние указанных параметров. При высоких частотах мостовые схемы могут быть применены при условии тщательного экранирования и предварительного уравновешивания моста с целью устранения влияния паразитных емкостей элементов моста и их собственных индуктивностей.  [c.79]

Схемы для измерения при высокой частоте  [c.173]

В области малых нагрузок и малых колебаний винтовая передача с натягом будет самотормозящей, и продольные колебания суппорта не смогут возбудить крутильных колебаний винта. В связи с этим благодаря меньшей частоте собственных кол аний возбуждаться будут в первую очередь продольные колебания суппорта. Эксперименты, выполненные на стенде [22], показали, что увеличение инерционной нагрузки не влияет существенно на резонансные частоты крутильных колебаний и амплитуды крутильных колебаний, измеренные на выходном валу привода подач. Таким образом, можем ограничиться исследованием влияния на точность перемещений лишь поступательно-движущихся элементов, продольные колебания которых целесообразно рассматривать непосредственно, не приводя их к крутильным. Следует отметить, что колебания высоких частот (до 1—2 кГц) могут проходить на суппорт и вызывать еле заметную на глаз рябь на поверхности детали, но существенно повлиять на качество обрабатываемой детали эти колебания не могут. Для расчетной схемы (см. рис. 55) и характеристики процесса резания, заданной в виде дифференцирующего звена, амплитуда суппорта в резонансе будет  [c.168]

Ат — автотрансформатор для регулировки намагничивающего тока при измерениях на высокой частоте вместо автотрансформатора к схеме подключается генератор с соответствующим диапазоном частот  [c.249]

Всеми этими приборами необходимо осуществлять всегда два измерительных процесса балансировку и измерение. Если не предъявляется высоких требований к точности измерений, то оба эти процесса можно объединить также и при высокой частоте. Принципиальную схему такого устройства можно видеть на рис. 47. Показанным на схеме переключателем можно включать три цепи  [c.77]

В анодной цепи имеются два измерительных прибора и М2 с различными пределами измерений. Наиболее чувствительный прибор имеет схему компенсации. Этой установкой исследуются включения с аномальной проводимостью, особенно расположенные близко к поверхности земли. При высоких частотах такие включения распознаются значительно отчетливее, чем при низких частотах.  [c.232]

Для особенно точных измерений в диапазоне высоких частот также применяют метод срыва колебаний, схематически показанный на рис. 202. Принципиальная схема его приведена на рис. 202, а. Измеряется изменяющийся анодный ток или постоянный анодный ток /а. На рис. 202, б представлены кривые этих величин в функции сопротивления Е и емкости С. Точки излома i и 2 (также и при высших частотах) очень резко выражены и вполне точно воспроизводимы.  [c.235]

Блок-схема САдУ приведена на рис. 5.21. Сигнал с датчика 1 упругого перемещения снимается по радиоканалу, благодаря чему обеспечивается надежность измерений в условиях эксплуатации. Всякому изменению величины упругого перемещения динамометрической оправки соответствует пропорциональное изменение частоты радиосигнала, который поступает от приемной антенны к усилителю высокой частоты (УВЧ). Усиленный частотно-модулированный сигнал поступает далее в частотный дискриминатор (ЧД), осуществляющий преобразование изменения частоты сигнала на входе в пропорциональное изменение напряжения на выходе в соответствии с выражением  [c.246]


РЕЛАКСАЦИОННЫЕ КОЛЕБАНИЯ, незатухающие колебания, по форме существенно отличные даже при весьма малых амплитудах от синусоидальных и возникающие яри известных условиях в системах, не обладающих свойствами колебательной системы в обычном смысле, т. е. в системах, не способных совершать свободные затухающие колебания с определенными собственными частотами. Р. к. нашли себе широкое применение в технике, гл. обр. в технике измерения частоты высокочастотных электрич. колебаний. Возможность применения Р. к. для этой цели обусловливается именно сильно выраженной их несину-соидальностью и следовательно богатством их обертонами вплоть до весьма высоких в Р. к. легко м. б. обнаружены обертоны выше десятого. Так как Р. к. в обычных схемах практически вполне периодичны, то, зная частоту основного колебания и порядок обертона, можно с большой точностью определить частоту, соответствующую каждому обертону, и тем самым свести задачу измерения высоких частот к измерению частот гораздо более низких, путем сравнения частоты данного высокого обертона с частотой измеряемой.  [c.255]

Явление рассматривается в литературе, посвященной исследованию схем автогенераторов высокой частоты. При определенном подборе режима работы генератора зависимость между изменением расстояния от колебательного контура генератора до металлического предмета и изменением потребляемого генератором тока становится линейной, что соответствует мягкому режиму самовозбуждения генератора. Из схемы видно, что датчик (схема обведена пунктиром) выполнен по схеме ВЧ-генератора с индуктивной связью на транзисторе Гь Колебательный контур генератора состоит пз катушки и конденсатора С. Начальный режим работы генератора определяется сопротивлением резисторов Н, Я2, напряжением стабилизации диода включенного в прямом направлении. Конденсатор Сг служит для блокировки переменной составляющей тока генератора. Транзистор Га работает в режиме усиления постоянного тока по схеме с общим коллектором. Коэффициент усиления и режим работы транзистора Га определяется резистором Рз. Применение схемы с общим коллектором позволяет снизить выходное сопротивление схемы. Последо-ва 1 ельпо с датчиком включен переменный резистор / 4, служащий для выбора режима работы датчика и являющийся одним из плеч моста. Таким образом, резистор и датчик представляют собой два плеча моста, два другие плеча составлены резистором и стабилитроном Дз(Д815Л). Применение стабилитрона обусловлено необходимостью снижения выходного сопротивления схемы. В одну из диагоналей моста включается сопротивление нагрузки Яц, последовательно с которым включаются резисторы Ят, Величина их зависит от Яп и требуемого предела измерения, выбираемого переключателем Пь Во вторую диагональ подается питание, стабилизированное стабилитро-  [c.115]

Как следует из уравнения (12.31), емкость или диэлектрическая проницаемость среды (жидкость-Ьгаз) однозначно характеризует величину б. Схема измерений, построенная на этом принципе,, показана на рис. 12.7, а. Обкладками конденсатора являются орошаемая поверхность 1 и пластина 2. Обычно площадь пластины не превышает 10 мм . Электронная аппаратура, измеряющая емкость, состоит из генератора высокой частоты 3, частотного детектора 4 и электронного потенциометра 5. По измеренной величине С толщина пленки определяется из уравнения  [c.253]

На фиг. 8, е показана схема механотронного термопреобразователя с внешним воспринимателем для компенсационного способа измерения тока высокой частоты. Здесь проволочка 1, по которой пропускается измеряемый ток, прикреплена одним концом к концу подвижного стержня 2 механотрона 3, а вторым концом — к натяжной пружинке 4. Натяжная пружинка 4 соединена с корпусом 5 механотрона 3 при помощи проволочки 6, точно такой же, как и проволочка 1. По проволочке 6 пропускается ток, сравниваемый с измеряемым током.  [c.134]

Динамические измерения. Для записи деформаций высоких частот применяется наиболее простая схема потенциометра с усилителем переменного тока (фиг. 175, а). Верхний предел измеряемых частот около 8000 гц может быть поднят применением очень коротких низкоёмкостных проводников и понижением коэфициента усиления отдельных ступеней усилителя. Нижний предел измеряемых частот 5—10 гц. Изменяющееся электрическое напряжение датчика подается на усилитель. Последний должен иметь линейную частотную характеристику во всём диапазоне измерений. При измерении статических деформаций схема потенциометра не применяется из-за неустойчивости усилителя постоянного тока при длительной работе.  [c.238]

Измерения производились с помопгью передвижной вибрационной установки ПВ-3, упомянутой выше. Отличительной особенностью прнмененной схемы явилось использование пьезоэлектрического щупа с усиленным рабочим сигналом нрп высоких частотах, для получения которого последовательно с ПВ-3 был включен электронный усилитель. В табл. 12 приведены значения частот и форм колебаний лопаток всех испытанных дисков. Лопатки — высокочастотные, находятся для основного тона тангенциальных колебаний вне зоны отстройки от критических чнсел оборотов. Разбросы частот колебаний лопаток для испытанных ступеней составляли от 3,0 до  [c.202]

Пульсации квазистационарного потока передаются от низких частот к высоким, где полностью диссипируют. Следовательно, турбулентные пульсации потока занимают широкий спектр частот, начиная от крупномасштабных (низкочастотных) и заканчиваясь мелкомасштабными (высокочастотными). Такое представление турбулентного потока позволяет раздельно исследовать спектральные (спектральная модель) и квазистационарные (квазистационар-ная модель) характеристики турбулентного потока. На рис. 1 приведена принципиальная схема измерений спектра турбулентных пульсаций во входном (в—в) и выходном (О—0) сечениях патрубка. Воздух из бака (акустического фи.льтра) следует ко входному измерительному устройству в сечении в—в, затем проходит через исследуемый патрубок, выходное измерительное устройство в сечении О—О и через подпорную трубу с сеткой выходит в атмосферу. В измерительных устройствах установлены датчики, соединенные с регистрирующими нрЕборами. При исследовании спектральной модели датчиками являются зонды термоанемометра 7, перемещающиеся с помощью координатника 2, а регистрирующими приборами — вольтметры 4 та 5, соединенные с датчиками через процессор 3. При исследовании квазистационарной модели датчиками являются пневмометрические зонды, а регистрирующими устройствами — батарейные микроманометры.  [c.99]

Рис. 2.19.функциональная схема установки для измерения флуктуаций автоэмиссионного тока ВСИ — высоковольтный стабилизированный источник ИЧХ — измеритель частотных характеристик КГ — кг1либровочный генератор КО — контрольный осциллограф ШО — широкополосный осциллограф Ф — фотоаппарат 30 — запоминающий осциллограф ИД — измеритель дисперсии АС — анализатор спектра УНЧ -I- ЛС — усилитель низкой частоты с акустической системой ВЧФ — фильтр высокой частоты Д — экспериментальный диод УС — широкополосный усилитель 3 — быстродействующая защита  [c.90]

Схемы для измерения пульсирующих значений скорости в турбулентных потоках значительно сложнее [43]. Более распространены схемы с Т = = onst, позволяющие измерять пульсации скорости высокой частоты и сильно меняющейся амплитуды.  [c.384]


Структурная схема импульсного ультразвукового эходефектоскопа приведена на рис. 8.8. Электроакустический преобразователь ЭАП (пьезоэлектрический искатель) служит для преобразования электромагнитных колебаний в ультразвуковые, излучения их в изделие и приема колебаний, отраженных от дефектов. Усилитель сигналов УС состоит из усилителя высокой частоты с коэффициентом усиления 10 —10 и детектора. Генератор зондирующих импульсов ГИ вырабатывает высокочастотные импульсы напряжения, возбуждающие ультразвуковые колебания ЭАП. Синхронизатор С предназначен для обеспечения синхронной работы узлов дефектоскопа. Он обеспечивает одновременный запуск генератора ГИ и генератора линейно изменяющегося напряжения ГЛИН, который служит для формирования напряжения развертки электронно-лучевой трубки ЭЛТ. Измеритель времени ИВ предназначен для измерения времени прохождения импульса до дефекта и обратно. Регистрирующее устройство РУ селектирует эхосигнал от дефекта по времени и по амплитуде и фиксирует его на самописце. Блок регулировки чувствительности РЧ служит для выравнивания амплитуд сигналов от дефектов, залегающих на разной глубине.  [c.376]

Для высоких частот (десятки мегагерц) применяют специальные схемы (Т-образные мосты). Преимущество таких схем — возможность заземления входной и выходной цепей, что облегчает экранировку элементов схемы. На рис. 9.29, в представлен Т-об-разный мост измерения индуктивного сопротивления. В условиях равновесия, когда I =-- 0 R (Г фС1у, L = 2j(a a.  [c.80]

Рис. 40. Схема уст.э-новки для измерения электрического сопротивления грунта / — ИСТОЧНИК переменного тока высокой частоты (ламповый генератор или индукинонная катушка) 2 - реохорд Рис. 40. Схема уст.э-новки для <a href="/info/39828">измерения электрического</a> сопротивления грунта / — <a href="/info/272653">ИСТОЧНИК переменного тока</a> <a href="/info/420831">высокой частоты</a> (<a href="/info/28917">ламповый генератор</a> или индукинонная катушка) 2 - реохорд
Для измерения отношений сигналов на входе усилителя высокой частоты имеется аттенюатор, позволяющий ослабить входной сигнал ступенями лрубо—через 10 дБ до 70 дБ и точно—через 1 дБ до 9 дБ. Погрешность аттенюатора в ДУК-66П составляет 1... 5 дБ. В дефектоскопе предусмотрен опециальный переключатель, с помощью которого усилитель может быть непосредственно подключен к генератору радиоимпульсов (при работе по совмещенной схеме) или отключен от него (раздельная схема).  [c.23]

Для кварцевых резонаторов К мало, поэтому частотный способ измерений (даже при легко достижимой крутизне преобразования, например методом изменения ц альсиферового сердечника, имеющего порядок 1 МГц/В) может регистрировать измеряемую величину с точностью до 3—4-го знака. Хотя в принципе, исходя из выражения (6.32). можно ожидать получения точности выше семи знаков. Кроме того, из этого выражения следует, что для увеличения чувствительности целесообразно работать на более высоких частотах 0. Таким образом, с ростом частоты о чувствительность частотной схемы измерения повышается. При этом известно, что с ростом частоты генераторных колебаний уменьшается относительная их нестабильность. которая определяет погрешность частотных измере-  [c.201]

ЗПК обеспечивают в рассмотренной схеме эффект п1умоглуп1ения порядка б В. Установка эжектора добавила в эффект п1умоглуп1ения несущественную величину (не более 1 Для объяснения этого были проанализированы физические спектры шума. Они приведены на рис. 2 (1 - вариант 1, 2 - вариант 5 с облицовкой, 3 - вариант 5 с облицовкой и эжектором). Эти данные показывают, что при установке эжектора произошло существенное подавление высоких частот, но появился дополнительный шум на низких частотах. Результаты тер-моанемометрических измерений на модельной установке показали, что коэффициент эжекции в данной конструкции мал и усиление шума на низких частотах не может быть связано с увеличением размера струи при снижении скорости истечения.  [c.334]

К приборам, основанным на резонансных методах, относятся куметры — измерители добротности. Для определения С и 10 6х диэлектрика в них используется принцип вариации реактивной проводимости. С генератором Г высокой частоты индуктивно связан контур, который состоит из катушки связи, сменной катушки индуктивности (Ь, Я ) и конденсатора переменной емкости С параллельно конденсатору включен электронный вольтметр, шкала которого проградуирована в единицах добротности параллельно, кроме того, к зажимам может присоединяться испытуемый конденсатор (рис. 4-8, а). Конденсатор переменной емкости практически не имеет потерь, поэтому сопротивление контура без образца равняется сопротивлению Катушка связи нагружена на безреактивное сопротивление / д, величина которого весьма мала по сравнению с сопротивлением контура Я поэтому можно считать, что весь ток, измеряемый миллиамперметром, практически идет через сопротивление Я . Подводимое напряжение, которое равно напряжению на сопротивлении при измерениях не должно меняться. С этой целью поддерживается один и тот же ток в цепи катушки связи величина тока контролируется термомиллиамперметром (рис. 4-7), а в некоторых схемах — с помощью вспомогательного вольтметра. Иногда напряжение вводится в контур индуктивным путем  [c.92]

В куметре УК-1 генератор Г индуктивно связан с катушкой связи, нагруженной на индуктивное сопротивление витка с небольшой индуктивностью в и ничтожным активным сопротивлением (рис. 4-8). Отсутствие в схеме сопротивления связи позволяет осуществлять измерение высокой добротности. Таким образом, отличительной особенностью схемы УК-1 по сравнению со схемой куметра КВ-1 состоит в том, что напряжение в измерительный резонансный контур вводится при помощи витка связи с весьма малым активным сопротивлением. Это напряжение i/o измеряется электронным вольтметром V , проградуированным в значениях множителя добротности М. Напряжение на образцовом конденсаторе измеряется вторым электронным вольтметром, проградуированным в значениях Q (при М = 1). Если М > 1, то показания, отсчитанные по шкале второго вольтметра, следует умножить на М. Настройка измерительного контура в резонанс производится с помощью основного и подстроечного конденсаторов, имеющих весьма малые значения собственной индуктивности. Емкость изменяется в пределах от 13 до 65 пф и может устанавливаться с точностью до 0,01 пф. С помощью этого куметра можно измерять емкость образцов в пределах от 30 до 60 пф и добротность от 80 до 1200. Погрешность измерения емкости (0,02Сд. + 1 пф), где Сд, — емкость образца. Погрешность измерения Q не более 10% при частотах ниже 100 Мгц. При переходе к более высоким частотам погрешность возрастает. На верхней горизонтальной панели имеются гнезда с зажимами для включения катушки (задние зажимы) и конденсатора (передние) левый передний зажим заземлен (рис. 4-8, б). Техника измерений куметром УК-1 аналогична описанной выше для куметра КВ-1. В связи с более высокими частотами необходимо, чтобы образец присоединялся с помощью коротких посеребренных проводников, имеющих малые индуктивность и активное сопротивление на высокой частоте. Необходим также хороший контакт между соединительными проводниками и зажимами прибора.  [c.95]

Использование принципа резонанса напряжений имеет ряд преимуществ по сравнению с резонансным трансформатором. В частности путем изменения параметров контура можно менять частоту испытательного напряжения, напряжение на анодном контуре значительно меньше испытательного напряжения. При мощности генератора 25 квт и емкости образца 100. . . Ъ0 пф испытательное напряжение может достигать 80 кв. Имеются высокочастотные испытательные установки с более широким диапазоном частот. В одной из таких установок (рис. 6-14, б) колебания, генерируемые возбудителем 1, после усиления воздействуют на мощный двухламповый каскад, собранный по двухтактной схеме. Колебательный контур состоит из катушки индуктивности и испытуемой емкости включение автотранс( рматорное. Регулирование напряжения высокой частоты производится путем изменения крутизны первой лампы усилителя воздействием на сеточное смещение. Напряжение на образце измеряется при посредстве емкостного делителя амплитудным ламповым вольтметром с симметричным входом, имеющим три предела измерений  [c.175]

Нулевым иидикаторо.м при измерениях на промышленной частоте обычно служит вибрационный гальванометр, на более высоких частотах — осциллограф или электронный нуль-индикатор (гальванометр). Опишем кратко принцип работы потенциометра, ир шципиальная схема которого изображена на рис. 5-4.  [c.184]

Задача 2-7. На рис. 2-1-6 изображена принципиальная схема куметра, удобного для измерения Ев н 12 й на частотах в интервале 50 кГц—50 МГц. Вначале при постоянной частоте / генератора и низком сопротивлении Го протекает определенный электрический ток высокой частоты, и на участке аа возникает определенное электрическое напряжение ё. Затем, изменяя емкость переменного воздушного конденсатора Сг, производят настройку так, чтобы  [c.64]


Для этой цели может быть ис-тользовая резонансный метод измерения tg В при высоком напряжении, основанный на вариации активного сопротивления роль переменного регулируемого сопротивления играет электронная лампа JI2 (фиг. 21-44). Анодный ток / триода JI2 можно регулировать изменением смещения на сетке. Колебательный контур высокой добротности о, Со возбуждается генератором высокой частоты, параллельно контуру включают образец Сх, электронный вольтметр и нагрузочную схему, содержащую двухэлектродную лампу Л, через которую заряжается вспомогательный конденсатор Сд конденсатор может разряжаться через лампу Л2, анодный ток которой /д легко регулировать от нуля до максимального путем изменения сеточного смещения.  [c.50]


Смотреть страницы где упоминается термин Схемы для измерения Пр при высокой частоте : [c.268]    [c.268]    [c.234]    [c.119]    [c.403]    [c.108]    [c.390]   
Смотреть главы в:

Испытания электроизоляционных материалов  -> Схемы для измерения Пр при высокой частоте



ПОИСК



Измерения при высоких частотах

Схемы измерений

Частота, измерение

Частоты высшие



© 2025 Mash-xxl.info Реклама на сайте