Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кулачковые и передаточные механизмы Кулачковые механизмы

Функция положения и передаточные функции кулачковых механизмов  [c.15]

Глава VI. Кулачковые и передаточные механизмы  [c.134]

Основное условие обычно выражается в виде некоторой функции, экстремум которой должен определить требуемые параметры синтезируемого механизма. Эту функцию обычно называют целевой функцией. Ниже, при рассмотрении задач приближенного синтеза зубчатых, кулачковых и рычажных механизмов будут показаны примеры различных целевых функций. Так, например, для зубчатого механизма это может быть его передаточное отношение, для кулачкового механизма — заданный закон движения выходного звена, для рычажного механизма — оценка отклонения шатунной кривой от заданной и т. д. Дополнительные ограничения, накладываемые на синтезируемый механизм, могут быть представлены или в форме каких-либо функций, или чаще в виде некоторых алгебраических неравенств.  [c.412]


Наибольшим уровнем средних скоростей поворота отличались кулачковые и мальтийские механизмы (при D <С 1л) эти скорости у отдельных конструкций достигали 40—50 (автоматы для пищевой промышленности). Однако в большинстве случаев они не превышали 10 с , а у механизмов позиционирования с гидравлическим и пневматическим приводами йср 5 Такие скорости достигались при D = 0,08—1,0 м. Наименьшими ср отличались электромеханические устройства с зубчатыми передачами, имеющими постоянное передаточное отношение.  [c.8]

В кулачковых системах задающим звеном является совокупность кулачков, установленных на одном или нескольких распределительных валах при этом на точности перемещений исполнительных органов сказываются неточности кулачков и передаточных механизмов.  [c.145]

В сложных системах, составленных из шарнирно-рычажных, кулачковых и мальтийских механизмов в соединении с зубчатыми передачами, общее передаточное отношение следует искать как произведение передаточных отношений каждого из последовательно соединенных механизмов.  [c.251]

Из формулы (8.14) видно, что момент М зависит не от абсолютных скоростей, а от их отношений, т. е. от передаточных отношений, которые в зубчатых передачах с круглыми колесами постоянны, а в шарнирно-рычажных, кулачковых и других механизмах являются функциями положения ведуш,его звена.  [c.255]

Решение этих уравнений для разных схем передаточного механизма показано на рис. 21.17 для привода от зубчатого (рис. 21.17, а) и кулачкового механизмов (рис. 21.17, б), гидравлического цилиндра (рис. 21.17, в). Из сказанного следует, что силовой расчет входного звена механизма выполняется только тогда, когда известен способ уравновешивания (моментом или силой с определенной точкой приложения).  [c.278]

Приведенные моменты инерции или массы могут быть величинами переменными, если отношения скоростей, входящих в формулу, будут величинами переменными, например приведенный момент инерции для шарнирно-рычажных и кулачковых механизмов. Для зубчатых передач с постоянными передаточными отношениями приведенный момент инерции будет постоянной величиной. Приведенные момент инерции и масса — величины положительные.  [c.174]


В механизмах с переменным передаточным отношением различные положения полюса А на линии и форма центроид и аксоид звеньев 1 к 2 (начальные кривые) определяются заданным законом изменения передаточного отношения = / (фх) (рис. 2.5, г — зубчатая передача со спиральными колесами, рис. 2.5, е — кулачковый механизм).  [c.37]

Механизмы с некруглыми зубчатыми колесами. Механизмы с некруглыми зубчатыми колесами имеют переменное передаточное отношение. Они применяются в счетно-решающих устройствах, в следящих и программных регуляторах и других приборах и машинах для воспроизведения (моделирования) функции у = f (х). Эти механизмы обеспечивают более высокую точность и к. п. д. и имеют меньшие габариты, чем кулачковые механизмы аналогичного назначения.  [c.257]

Мы не будем подробно описывать ход рассуждений конструктора, проектирующего автомат.Отметим только, что все вспомогательные механизмы должны работать о остановками и поэтому для них целесообразно-предусмотреть кулачковые механизмы. Кулачки всех механизмов закрепляются на специальном валу 5, получающем движение от коренного вала 3 через зубчатую передачу 4 с передаточным отношением, равным двум. Коренной вал 3 вращается электродвигателем 1 через редуктор 2.  [c.352]

Методы исследования других передаточных механизмов изучаются в основном на зубчатых и кулачковых механизмах, как наиболее распространенных в этой группе (рис. 1.2).  [c.9]

Некруглые колеса. Примерами механизмов с высшими кинематическими парами и переменным передаточным отношением являются механизмы с некруглыми зубчатыми колесами и кулачковые. В машиностроении механизмы с некруглыми колесами применяются при передаче движения с переменным передаточным отношением, в приборостроении — чаще всего для воспроизведения нелинейных функций. Указанные колеса рекомендуют применять при небольших угловых скоростях и при параллельном расположении осей. Наибольшее распространение получили некруглые колеса, центроиды которых имеют форму эллипса (рис. 1.26). При их проектировании необходимо выполнить условие, чтобы сумма двух любых сопряженных радиусов-векторов была равна постоянной величине, равной межосевому расстоянию  [c.44]

Виды кулачковых механизмов. Кулачковые механизмы находят широкое применение в машинах и приборах в качестве передаточных механизмов, обеспечивающих практически любой закон движения исполнительного звена.  [c.328]

В ряду этих механизмов одно из первых мест принадлежит кулачковым механизмам, в которых можно просто осуществить движение с произвольной длительностью выстоев и с произвольной передаточной функцией на переходных участках. Такой механизм, как мы видели в гл. I, состоит из кулачка, толкателя и стойки. Кулачок с толкателем образуют высшую пару, а кулачок со стойкой и толкатель со стойкой — низшие. В зависимости от вида низшей пары, образуемой кулачком со стойкой, кулачок может иметь либо вращательное, либо возвратно-поступательное прямолинейное движение. Поэтому подвижные звенья кулачкового механизма в отличие от шатунов рычажных четырехзвенников могут двигаться лишь по простым круговым или прямолинейным траекториям. Отличительным признаком высшей пары кулачкового механизма является то, что один ее элемент имеет переменную кривизну, а другой — постоянную. Именно благодаря этому можно очень просто осуществить любой наперед заданный вид передаточной функции (при этом, разумеется, существуют некоторые ограничения, о которых будет сказано дальше).  [c.81]

Наиболее часто при проектировании кулачковых механизмов применяются следующие симметричные законы единичных вторых передаточных функций косинусоидальный, синусоидальный, прямоугольный и трапецеидальный.  [c.138]

При конструкторских расчетах устанавливают длительность рабочих и вспомогательных ходов, число гнезд технологических и транспортных роторов число роторов в линии, передаточные числа привода вращения роторов, параметры законов движения исполнительных органов технологических роторов, размеры кулачковых, гидравлических и других механизмов главного привода, мощность приводных электродвигателей, необ-  [c.315]


Кинематические схемы современных сложных машин и автоматов состоят из многочисленных и разнообразных механизмов кривошипно-шатунных, зубчатых, кулачковых, ременных, цепных, червячных, гидравлических, пневматических, электрических и т. д. Одни из них обеспечивают постоянное соотношение скоростей и передаточных чисел, другие — определенный характер движения (с остановками, без остановок, ускоряющееся, замедляющееся и т. д.), третьи — изменение направления движения, четвертые — получение сложных траекторий движения...  [c.28]

От ведущего вала двигателя, на котором установлено колесо 1, движение может передаваться к ведомому валу 5 или посредством кулачковой полумуфты 3 при зацеплении ее с полумуфтой 2 (в этом случае ведомый вал 5 вращается непрерывно со скоростью вала двигателя), или посредством передаточного механизма, составленного из зубчатых колес 1, 10, 8, 9, 4 и зубчатого сектора 6 с шатуном 7. В последнем случае полумуфта 3 соединяется с кулачками колеса 4, которое получает колебательное движение от зубчатого сектора 6, свободно установленного па валу 11.  [c.566]

В машинах, механизмы которых не характеризуются постоянством передаточных отношений (примером их могут служить машины, в состав которых входят шарнирные механизмы, кулачковые механизмы, некруглые зубчатые колеса и т. п.), движение с Е = onst практически трудно осуществимо и для них движением при нормальном рабочем режиме будет не движение с Е = onst, а другой тип установившегося движения, к рассмотрению которого мы сейчас и перейдем.  [c.25]

Передаточные механизмы приборов указатель вертикальной скорости указатели воздушной скорости, числа М высотомер поплавковый электрический топливомер бензино-мер гидростатический корректор главного указателя индукционного компаса датчики скорости автоштурманов с указателями в условной системе координат и на карте механизм кулачково-рычажного коммутатора Г. А. Фильцера  [c.267]

Наиболее разнообразны применяемые в современных технологических машинах преобразующие механизмы с переменными передаточными отношениями. По условиям их работы (возможности преобразования движения) и методам их расчета удобно различать три группы таких механизмов 1) кривошипно-рычажные, в состав которых входят лишь низшие кинематические пары 2) кулачково-рычажные, в состав которых входят высшие пары и ведущим звеном является кулачок 3) комбинированные, в состав которых в различных комбинациях могут входить зубчатые (обычно планетарные), кулачковые и кривошипнорычажные механизмы.  [c.129]

Модуль зубчатых колес т, мм Число блоков сателлитов k Передаточное отношение редуктора и Максимальный ход толкателя кулачкового механизма Л, мм Номер закона данжения толкателя Фазовые углы кулачкового механизма фу = град  [c.217]

Поверхности злементов высшей кинематической пары, обеспечивающие заданный закон движения, называются сопряженными поверхностями. Механизмы могут иметь либо одну, либо несколько пир сопряженных поверхностей. Первый случай исполь- уетси, например, в кулачковых механизмах, воспроизводящих возвратное движение выходного звена по заданному закону, задаваемому посредством передаточной функции. Второй случай используется в зубчатом зацеплении, в котором непрерывное движение выходного звена обеспечивается путем последовательного взаимодействия нескольких Fiap сопряженных поверхностей. Передаточная функция зубчатых механизмов, как правило, постоянна и называется передаточным отпоп ением. Наличие высшей кинематической пары вносит существенные особенности в методы синтеза механизма.  [c.340]

При проектировании кулачковых механизмов необходимо удовлетворить различные требования минимума габаритных размеров контактных напряжений и потерь на трение, исключения возможности заклинивания при работе и др. Для снижения материалоемкости обычно стремятся к уменьшению габаритных размеров. Так как угол давления определяется направлениями вектора скорости выходного звена и нормали к профилю кулачка, то, следовательно, выбор геометрических размеров механизма определяет и его эксплуатационные свойства Для всего диапазона изменения передаточной функции необходимо обеспечить значение угла давления, M Hbuiee минимально допустимого ссд Размеры, полученные из условия обеспечения требуемых качественных характеристик и определяющие габаритные размеры механизма, называют основными.  [c.172]

Пои аналитическом и численном решении задачи необходимо оп-редел>1Ть точки соприкосновения касательных с передаточной диаграммой Это вызывает затруднения, если функция % (Ф1) = = Ф (ds2 (Wl) d(Pl) не задана аналитически, В этих случаях целесообразно воспользоваться предположением о малом влиянии на основные размеры кулачкового механизма отклонений угла давления от оптимального значения Это дает возможн<ють проводить под углом ад прямую, проходящую через точки диаграммы, оот-аетствующие (ds2 ( p )/d (Ф )тах, а не касательную к передаточной диаграмме (рис. 15.5) Центр кулачка должен находиться на этой прямой. Если требуется получить механизм в е = О, то центром вращения будет точка О,. С целью уменьшения размеров кулачка обычно принимают в Ф 0.  [c.174]

В разомкнутой системе (рис. XIII.1, а) командные сигналы подаются от программоносителя 1 к исполнительному органу 5, последний совершает требуемые движения без их корректирования. В этих системах точность перемещений ИО зависит от точности изготовления программоносителя, дешифратора 2, передаточно-передающего устройства 3 и исполнительного механизма 4. Эти системы не дают информации о характере протекания процесса, поэтому они широко применяются для управления такими технологическими процессами, которые независимо от внешних воздействий остаются практически постоянными. К таким системам относятся системы, управляющие работой шарнирно-стержневых и шарнирно-кулачковых цикловых механизмов.  [c.250]


Для осуществления такой замены кулачкового механизма нецентральным кривошипно-шатунным механизмом, кроме радиуса кривизны р, нужно знать направление нормали N (рис. 394, а). Если профиль кулачка был спроектирован по заданному закону движения толкателя или закону изменения его скорости или ускорения (равно как по геометрическим функциям — по функции положения или передаточным функциям), то положение нормали может быть найдено по углу давления а, tg которого может быть определен при положительном эксцентриситете из формул (9) и (И) гл. XIII  [c.379]


Смотреть страницы где упоминается термин Кулачковые и передаточные механизмы Кулачковые механизмы : [c.133]    [c.114]    [c.162]    [c.256]    [c.178]    [c.276]    [c.101]    [c.323]    [c.323]   
Смотреть главы в:

Детали механизмов точной механики  -> Кулачковые и передаточные механизмы Кулачковые механизмы



ПОИСК



Кулачковые и рычажные передаточные механизмы

Кулачковый

Механизм кулачковый

Передаточные механизмы

Передаточный



© 2025 Mash-xxl.info Реклама на сайте