Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободная энергия изотропного упругого тела

В случае изотропного тела для получения более конкретного вида свободной энергии можно воспользоваться тем, что функция Ф на самом деле может. зависеть только от инвариантов тензора деформаций. Поэтому для изотропного упругого тела формулу (2.23), вводя подходящие обозначения для коэффициентов, можно представить в виде  [c.320]

Предполагая изменения температуры Т — Тд малыми по сравнению с Тц, выражение для свободной энергии Р изотропного упругого тела в случае малых деформаций можно взять в виде (см. (2.24))  [c.398]


Убедиться в этом нетрудно. Произвольная однородная деформация может быть полностью определена длинами Ха, Хь, Хс и ориентацией полуосей некоторого эллипсоида, так называемого эллипсоида деформации. Изотропной мы называем среду, изучаемые физические свойства которой одинаковы по всем направлениям— в нашем случае это свободная энергия или, более точно, разность величин свободной энергии в напряженном и ненапряженном состояниях. Следовательно, для изотропного упругого тела свободная энергия в состоянии / может зависеть от длины полуосей эллипсоида деформаций, но не должна зависеть от их ориентации относительно материала. Поэтому длины ка, Хь, К могут входить в F только в симметричных комбинациях (таких, как (8.3)). Эти требования, очевидно, необходимы для того, чтобы было одинаково изменение свободной энергии для двух деформаций fo- t и отличающихся лишь ориентациями (относительно среды) главных осей.  [c.207]

Мы установили, что нормальные компоненты напряжения при одноосном сдвиге упругих тел различны, в частности, для эластомера Ри —P22 = oS и Р22 —Рзз=0 (4.24), где s = tgs—величина сдвига. В общем случае изотропного идеально упругого тела обе разности Р — Р22 и Р22 — рзз могут быть ОТЛИЧНЫ ОТ нуля (8.20). Следовательно, измерение разностей нормальных напряжений при деформации сдвига будет сообщать информацию о свободной энергии (8.11).  [c.282]

Как мы видели в главе 8, реологические свойства любого изотропного, абсолютно упругого твердого тела определялись свободной энергией F, заданной как функция трех инвариантов тензора деформации и температуры. Для изотермических деформаций в несжимаемом твердом теле зависимость F от температуры и инварианта /з можно не учитывать. Величина /з при постоянном объеме равна единице, и произведение  [c.318]

Линза представляет собой сплошное тело. При наложении температурного поля оправа не позволяет линзе свободно изменять свои размеры, что приводит к возникновению в них напряженно-д )ормированного состояния. При этом вся система будет находиться в равновесии. После изменения на некоторую величину температура считается постоянной. Для сплошных тел, находящихся в равновесии, в теории упругости формулируются два принципа — начало возможных перемещений и начало возможных изменений напряженного состояния, которые устанавливают связь между компонентами напряжений и производными от удельной энергии деформации по компонентам деформаций. Это позволяет вывести в общем виде соотношения между напряжениями и деформациями в изотропных упругих телах [26 28 33 34]. Если решение задачи основывается на принципе возможных перемещений (основная задача, или принцип Лагранжа), то в результате получаются перемещения для любой точки тела, для которого производится решение. Принципиально решения на основе обоих принципов равнозначны, оба решения базируются на приращении работы деформации, однако оптиков в большей степени интересует не само напряженное состояние, а то искажение формы детали, которое оно вызывает. Поэтому для расчета перемещений любых точек  [c.157]


Наконец, сделаем еще следующее замечание по поводу фигурирующих в (36,1) модулей упругости. Поскольку они введены как коэффициенты в свободной энергии, ими определяются изотермические деформации тела. Легко видеть, однако, что те же коэффициенты определяют в нематиках также и адиабатические деформации. Действительно, мы видели в 6, что для твердого тела различие между изотермическими и адиабатическими модулями возникает в силу наличия в свободной энергии члена, линейного по тензору деформации. Для нематиков аналогичную роль мог бы играть член, линейный по производным dutii. Такой член должен был бы быть скаляром и к тому же инвариантным по отношению к изменению знака п. Очевидно, что такой член построить нельзя (произведение п rot п — псевдоскаляр, а единственный истинный скаляр div п меняет знак вместе с п). По этой причине изотермические и адиабатические модули нематика совпадают друг с другом (подобно тому, как это имеет место для модуля сдвига изотропного твердого тела — 6). Эти рассуждения можно сформулировать и несколько иначе в отсутствие линейного члена квадратичная упругая энергия (36,1) является первой малой поправкой к термодинамическим величинам не-  [c.194]

Необходимо сразу же отметить, что это выражение получено для изотропной среды переходя к анализу разрушения анизотропных тел — кристаллов с резко выраженной спайностью, следует иметь в виду, что расколы по разным кристаллографическим плоскостям требуют существенно различных усилий вследствие различия значений а по этим плоскостям и анизотропии упругих свойств кристалла. Вместе с тем следует подчеркнуть, что полученная зависимость рс (с), строго говоря, имеет место лишь в случае совершенной хрупкости тела. Если тело пластично, то некоторая (а в ряде случаев и преобладающая) доля упругой энергии, освобождаемой при раскрытии трещины, может расходоваться не на создание новой свободной поверхности (поверхности стенок трещины), а на пластическое течение материала,—прежде всего, в местах, прилежащих к вершине трещины, где концентрации напряжений наиболее высоки. Если и при этих условиях сохранить величину р = а (Еа/с) в качестве критерия, определяющего опасное нормальное напряжение рс, то вместо обычных значений а 10 эрг1см придется оперировать с некоторыми условными величинами ст, достигающими 10 —10 дрг см , поскольку они включают энергию, затрачиваемую на создание пластических деформаций в районе растущей трещины [171—173]. Отсюда не следует, однако, что условие Гриффитса с обычными значениями (Т вообще неприложимо к кристаллам, обнаруживающим заметную пластичность перед разрывом по плоскости спайности. Действительно, для вьшолнения этого условия достаточно, чтобы лишь в одном сечении кристалла пластические сдвиги перед вершиной растущей трещины были затруднены присутствием тех или иных препятствий — именно здесь и разовьется при некотором уровне напряжений опасная трещина, тогда как во всех остальных частях кристалла при этом может идти пластическая деформация, достигая заметных величин — многих процентов или десятков процентов. Экспериментальные данные, непосредственно подтверждающие приложимость условия Гриффитса к анализу разрушения амальгамированных монокристаллов цинка, будут приведены ниже (см. также [106]).  [c.171]

В классич. физике считалось, что кинетич. энергия тела может быть сделана сколь угоднр малой, в пределе — равной нулю, когда тело приведено в состояние покоя. В действительности, однако, в системе, части к-рой или вся она в целом имеют конечную неопределенность положения Д5, не равна нулю неопределенность импульса Л/) вдоль той же координаты д, а именно Ь.р UjKg. Поэтому среднее и вероятное значения импульса, а следовательно и кинетич. энергии, не равны нулю. Только в идеализированном случае вполне свободной частицы может быть сделано Ь.д =оо и Др = 0. В реальных же случаях всегда Др 0. Так, напр., частица, сдерживаемая вблизи положения равновесия изотропными квази-упругими силами, —осциллятор — в наинизшем энергетическом состоянии имеет энергию где Oq — характерная частота осциллятора (соо = если т — масса частицы, к — коэфф. в операторе потенциальной энзргии V — кг 12, г — отклонение от положения равновесия). Наличие нулевых колебаний обнаруживается в различных процессах. Например, колебания атомов кристалла вблизи положений равновесия приближенно описываются как колебания осциллятора. Характерное уширение линий рассеиваемого атомами света, вызываемое этими колебаниями, обнаруживается даже при наименьших возможных темп-рах. Сама же Н. э. играет роль аддитивной постоянной и может рассматриваться как нулевой уровень при отсчете энергии. Это возможно потому, что Н. э. не может быть никакими средствами отобрана у системы без нарушения ее связей и структуры и т. о. не участвует в энергетич. превращениях. По существу Н. э. является всякая энергия основного состояния квантовой системы.  [c.448]



Смотреть страницы где упоминается термин Свободная энергия изотропного упругого тела : [c.155]   
Смотреть главы в:

Механика сплошной среды Изд3  -> Свободная энергия изотропного упругого тела



ПОИСК



Изотропность

Свободная энергия

Тело изотропное,

Тело свободное

Упругая энергия

Упругие тела

Энергия упругого тела

Энергия упругости



© 2025 Mash-xxl.info Реклама на сайте