Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон кинетических моментов для материальной системы

Закон кинетических моментов для материальной системы )  [c.154]

Выведем законы сохранения кинетических моментов для системы, рассматривая материальную точку как механическую систему, у которой число точек равно единице. Естественно, что для одной материальной точки все действующие на нее силы являются внешними. Возможны следующие частные случаи теоремы об изменении кинетического момента системы.  [c.300]


Спрашивается — имеем ли мы право и в этом случае воспользоваться равенством (7.11) и снова прийти к закону сохранения величины и направления вектора /(с Этот вопрос возникает вполне естественно закон кинетических моментов, как и все законы динамики, мы выводим для движения материальной системы относительно инерциальной системы отсчета мы доказали в 8, гл. VI, что система S инерциальна, ибо главный вектор внешних сил был равен нулю и мы имели поэтому w — 0. Если же мы учитываем и притяжение звезд, то главный вектор  [c.156]

Называя для сокращения письма законами I, П, П1 соответственно закон количеств движения, закон кинетических моментов, закон изменения кинетической энергии, сравним их друг с другом. Рассмотрим так называемую материальную систему с полными связями, т. е. такую, положения всех точек которой определяются одним параметром (например, положения всех точек и звеньев механизма с одной степенью подвижности полностью определяются углом поворота коленчатого вала). Если для такой системы сумма работ всех сил реакций равна нулю, то закон III дает дифференциальное уравнение для этого параметра, т. е. полностью решает вопрос о движении такой системы.  [c.217]

Закон количеств движения дает одно векторное уравнение, т. е. три скалярных уравнения столько же дает закон кинетических моментов наконец, закон изменения кинетической энергии дает одно скалярное уравнение. Таким образом, все три основных закона позволяют написать в общей сложности семь дифференциальных уравнений. Этих семи уравнений в общем случае может оказаться недостаточно для нахождения движения каждой точки материальной системы кроме того — и это главное — в эти семь уравнений могут входить и реакции связей например, в законах количеств движения и кинетических моментов автоматически исключены внутренние силы, но те реакции связей, которые являются внешними силами, в эти уравнения войдут таким образом, хотя три основных закона динамики имеют определенный физический смысл, тем не менее они не дают возможности решить общую задачу динамики несвободной материальной системы.  [c.308]

В этом параграфе доказываются законы сохранения энергии, импульса и кинетического момента для системы материальных точек в Е .  [c.44]


Следует заметить, что равенства (31.17) и (31.32) отнюдь не тождественны. Так, может случиться, что закон сохранения кинетического момента будет соблюдаться в движении относительном и не будет справедлив для движения абсолютного, или наоборот. Пусть, например, данная система состоит из весомых частиц тогда к каждой частице её приложена сила m g постоянного направления. Такая система сил эквивалентна одной силе, именно, весу Mg системы, приложенной к центру масс. Поэтому если рассматриваемая материальная система свободная, то закон сохранения кинетического момента выполняется для относительного движения вокруг центра масс но он не будет, вообще говоря, справедлив для движения абсолютного. Даже, если закон сохранения кинетического момента соблюдается для обоих движений, абсолютного и относительного, всё-таки постоянные во времени векторы Gq и <5 > будут, вообще говоря, различны и по модулю, и по направлению точно так же неизменные плоскости Лапласа для движений абсолютного и относительного будут в общем случае отличаться по своему направлению.  [c.313]

Т. е. 1) дифференциал кинетической энергии материальной системы на бесконечно малом ее перемеи ении равен алгебраической сумме элементарных работ всех сил на соответствующих перемещениях их точек приложения 2) приращение кинетической энергии материальной системы на конечном ее перемещении равно алгебраической сумме полных работ всех сил на соответствующих перемещениях их точек приложения. Слова всех сил означают в обоих случаях всех заданных сил и реакций связей или всех внешних и внутренних сил. В законах количеств движения и кинетических моментов внутренние силы не фигурировали, ибо их главный вектор и главный векторный момент относительно любого центра равны нулю но алгебраическая сумма работ внутренних сил в общем случае материальной системы не равна нулю, как показано в п. 5° 2 она равна нулю в частном случае абсолютно твердого тела, но уже для упругого тела не равна нулю ).  [c.206]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]

Для замкнутых систем выполняется условие Л1лв ош = 0, так как на материальные точки замкнутой системы не действуют внешние силы. Поэтому при движении замкнутой системы материальных точек ее кинетический момент относительно любого неподвижного полюса не меняется. Это утверждение называется законом сохранения кинетического момента.  [c.73]

Теорему об изменении кинетического момента системы в ее движении относительно центра инерции можно было доказать иначе, не используя формулу (1.51), а исходя из основного закона динамики относительного движения ( 230 т. I). Как известно, всякую задачу при изучении относительного движения материальной точки можно решать как задачу об абсолЕОТ-ном движении, но вместо второго закона Ньютона для абсолютного движения нужно пользоваться основным законом динамики относительного движения  [c.66]

Теорема Якоби. Для того случая, когда материальная система состоит всего из двух частиц т, и т , Якоби (Ja obi) дал закону сохранения кинетического момента следующую геометрическую форму. Пусть и — частицы системы, и г 2 — их скорости, G, и Gg — их кинетические моменты относительно начала  [c.310]


В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Рассматривая законы количеств движения и кинетических моментов, мы видели, что при некоторых условиях имели место законы сохранения количеств движения или кинетических моментов, представлявшие собой с математической точки зрения первые интегралы уравнений движения, ибо в них не фигурировали производные второго порядка. Сформулируем теперь аналогичный закон сохранения для рассматриваемого закона изменения кинетической энергии если все силы, действующие на точки материальной системьс, потенциальны, то во все время движения системы сумма кинетической и потенциальной энергии,  [c.211]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]


Смотреть страницы где упоминается термин Закон кинетических моментов для материальной системы : [c.240]   
Смотреть главы в:

Теоретическая механика Очерки об основных положениях  -> Закон кинетических моментов для материальной системы



ПОИСК



Закон кинетического момента

Закон моментов

Кинетическая системы

Материальная

Момент кинетический

Момент кинетический системы

Момент системы сил

Система материальная



© 2025 Mash-xxl.info Реклама на сайте