Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СТЕКЛО Характеристики

Для измерения активной концентрации ионов водорода в растворе, определяющей его кислотные или щелочные свойства, применяются рабочие стеклянные электроды. Чувствительным элементом в них служит мембрана из литиевого стекла. Характеристики рабочих стеклянных (ЭС) и вспомогательных (ЭВ) электродов стандартизованы. Чувствительность электродной системы составляет около 58 мВ/1 pH при температурном коэффициенте, приблизительно равном 0,2 мВ/(1 °С 1 pH).  [c.373]


Отечественной промышленностью выпускается широкий ассортимент стеклотканей, отличающихся по составу стекла, характеристикам нитей, виду переплетения, толщине, прочности, плотности укладки волокон, виду замасливателя и другим показателям [14]. Характеристики некоторых стеклотканей, наиболее часто применяемых в качестве армирующих материалов в композитах, приведены в табл. 2.8.  [c.33]

Учебник содержит теоретические основы технологии шлифовки и полировки стекла, важнейшие сведения о шлифующих и полирующих материалах, описание устройства и технологические расчеты оборудования цехов шлифовки и полировки листового стекла, характеристики приборов и методов, служащих для контроля технологических процессов в этих цехах и применяемых в исследовательских работах в области холодной обработки стекла.  [c.2]

Применение наждачных порошков и прочих абразивных порошковых материалов для шлифования и полирования изделий перед гальваническими покрытиями имеет место прп накатке их на фетровые и войлочные круги, выпускаемые по ОСТу 37216, с наклейкой их на столярном клее или на жидком стекле. Характеристика абразивов в соответствии с ГОСТом 3647—59 приведена в табл. 3.  [c.14]

Установка для исследования влияния давления на гидродинамические характеристики псевдоожиженного слоя отличалась тем, что вместо цилиндрической колонны из нержавеющей стали была использована колонна из шлифованного и термически обработанного, для снятия внутренних напряжений, органического стекла с внутренним диаметром 105 мм и высотой рабочей зоны 0,38 м.  [c.105]

Улучшение характеристик противоточной системы с помощью принципа механического торможения изучалось автором совместно с сотрудниками не только при каскадно расположенных вставках, рассмотренных выше. Представляется, что наиболее эффективным осуществлением этого принципа является применение винтовых сетчатых вставок (одно- или многозаходных). Экспериментальное изучение таких вставок проводилось методами меченых частиц, р-просвечивания и отсечек [Л. 21, 84]. В первом случае экспериментальная установка состояла из стенда торможенной газовзвеси и электронного блока для регистрации заряженных частиц. Стенд торможенной газовзвеси включал в себя прозрачную цилиндрическую камеру из органического стекла высотой 0,8 и диаметром 0,34 м, в которую вставлялись сменные винтовые сетчатые вставки. Источником излучения являлась частица алюмосиликата di = = 4,35 мм, меченная Со активностью 0,5 мг-экв. Для проверки методики вначале были проведены опыты по определению времени свободного падения одиночной меченой частицы, которое сопоставлялось с теоретически рассчитанной величиной. Время находилось по (2-45) при у = 0, Vo.a=VT,a=0. Многократное определение времени, в течение которого меченая частица проходила контрольный участок камеры, совпадало с расчетным с погрешностью 4%, что лежит в пределах точности эксперимента и служит частной проверкой  [c.95]


Зависимость сопротивления от температуры для стекло-углеродных термометров отличается от характеристик обычных углеродных термометров их чувствительность выше, а сопро-  [c.249]

На рис. 1-14 представлены спектральные характеристики показателя преломления стекла /, кварца 2 и флюорита 3 [5]. Из графиков видно, что существует сильная  [c.31]

Вольт-амперные характеристики, изображенные на рис. 11.15,6, относятся к переключению с запоминанием. Они реализуются на стеклах с другими свойствами. При достижении порогового напряжения (Уп) здесь происходит переключение в проводящее состояние 1- 2). Это состояние сохраняется в стекле, даже если прило-370  [c.370]

Интерферометр Фабри—Перо. Интерферометр, или эталон Фабри—Перо, является в настоящее время основным прибором в спектроскопии высокой разрешающей силы. Его действие основано на интерференции большого числа лучей, получаемых при многократном отражении световой волны между двумя параллельно расположенными плоскими зеркалами, обладающими частичным пропусканием (рис. 26). В современных интерферометрах, как правило, используют многослойные диэлектрические зеркальные покрытия, которые наносят на подложки из оптического стекла или кварца в вакууме. Они позволяют получать высокие коэффициенты отражения света при малой величине потерь на поглощение. Худшие характеристики имеют покрытия из тонких пленок серебра и алюминия.  [c.76]

Таблица 31.49. Оптические характеристики пластифицированного и непластифицированного органического стекла [23] Таблица 31.49. Оптические характеристики пластифицированного и непластифицированного органического стекла [23]
В табл. 34.4 и 34.5 приведены физико-химические, оптические и спектрально-люминесцентные характеристики промышленных неодимовых лазерных стекол, выпускаемых в СССР. Все отечественные стекла имеют силикатную или фосфатную основу. Стимулированное излучение связано с переходами между электронными  [c.943]

В жидких лазерных материалах может быть достигнута концентрация активных ионов того же порядка, что и в лазерных стеклах. Это позволяет получить большие энергии и мощности излучения с единицы объема активного вещества. В то же время сильная зависимость показателя преломления от температуры обусловливает значительные оптические неоднородности, возникающие при накачке активной среды, что приводит к ухудшению генерационных характеристик лазеров и увеличению расходимости лазерного пучка. Применение прокачки активной жидкости через лазерную кювету позволяет реализовать как периодический, так и непрерывный режим работы лазера.  [c.948]

Масштабный фактор проявляется в увеличении хрупкости и снижении механических характеристик металла с увеличением размеров изделий. Статистическая теория дефектов объясняет это влияние тем, что вероятность существования опасного дефекта, облегчающего образование и развитие трещин, уменьшается при уменьшении размеров образцов. Этот вывод статистической теории подтверждается прямым экспериментом. Известно, например, что тонкие стеклянные волокна диаметром 5 мкм обладают в 50 раз большей прочностью, чем массивные образцы, изготовленные из того же стекла.  [c.434]

Характеристика фрез для обработки органического стекла и режимы резания  [c.87]

К этому виду относят стекла, применяемые в установочных деталях радиотехники — изоляторах конденсаторов, в каркасах резисторов, Б электровакуумных приборах и др. Стекла этой группы нередко применяют также- для переработки.в стекловолокно. Установочные стекла находятся под воздействием электромагнитных полей, поэтому наличие у них высоких электрических характеристик имеет важное значение.  [c.132]

Одной из определяющих характеристик является коэффициент линейного расширения ТК1, подбираемый близким к значению ТК1 соответствующего металла или сплава, с которым спаивается данное стекло.  [c.136]


Характеристики детекторов нейтронных изображений. Наиболее широкое распространение получили фотографические материалы (рентгеновские и фототехнические пленки и др.) и трековые детекторы (нитроцеллюлоза, слюда, стекло) (табл. 21).  [c.339]

В большинстве случаев пластмассы состоят из двух основных компонентов связующего и наполнителя. Связующее — обычно органический полимер, обладающий способностью деформироваться под воздействием давления. Иногда применяется и неорганическое связующее, например стекло в микалексе, цемент в асбоцементе ( 6-1, 6-19). Наполнитель, прочно сцепляющийся со связующим веществом, может быть порошкообразным, волокнистым, листовым ( древесная мука — мелкие опилки, каменная мука , хлопчатобумажное, асбестовое или стеклянное волокно, слюда, бумага, ткань) наполнитель существенно удешевляет пластмассу и в то же время может улучшать ее механические характеристики (увеличивать прочность, уменьшать хрупкость). Гигроскопичность и электроизоляционные свойства в результате введения наполнителя, как правило, ухудшаются, поэтому в пластмассах, от которых требуются высокие электроизоляционные свойства, наполнитель чаще всего отсутствует.  [c.148]

О НЕКОТОРЫХ ХАРАКТЕРИСТИКАХ ЗАЩИТНЫХ ПОКРЫТИИ, КОНТАКТИРУЮЩИХ С РАСПЛАВОМ СТЕКЛА  [c.68]

Повышение работоспособности технологической оснастки для производства стеклянных изделий прессованием может быть достигнуто за счет применения защитных покрытий. Определение эффективности покрытий требует установления некоторых основных эксплуатационных характеристик в условиях периодического контакта с расплавом стекла.  [c.68]

За характеристику смачиваемости принимали кинетический угол растекания бр( , расплава стекла на поверхности покрытия [7]. Этот угол определялся графическим методом на нагревательном оптическом микроскопе МНО-2 с автоматической регистрацией температуры и фотографированием капли в процессе растекания.  [c.69]

Жидкое стекло, используемое в качестве связующего, имеет различную плотность (т. е. степень разведения водой), модуль, характеризуемый молекулярным соотношением Si02 и Na O или К О, вязкость и клеющую способность. Важную характеристику жидкого стекла — сухой остаток — учитывают при расчете состава сухой смеси и состава шлаков, образующихся при плавлении покрытия.  [c.102]

В зависимости от принятого проектом способа защиты, аппаратура может футероваться в один или несколько слоев с подслоем (рубероидом, полиизобутиленом и др.) или оез него. В качестве вяжущих материалов используют чаще всего аамаени на основе жидкого (растворимого) стекла и замазки типа "Лрэамит", общая характеристика которых приведена в табл. 6, I  [c.65]

Из приведенного выражения (3.41) следует, что даже в этом упрощенном варианте на величину потока излучения сказывают существенное влияние все оптические свойства слоя, в том числе и вид индикатрисы рассеяния. В этой связи следует отмегить, что величина коэффициента поглощения таких материалов, как пористое стекло и кварцевая керамика, целиком определяется их химическим составом. В то же время на коэффициент рассеяния основное влияние оказывает форма, ориентация и концентрация рассеивающих центров, какими являются поры. Это важное для технологии обстоятельство позволяет регулировать ошические характеристики проницаемых матриц из полупрозрачных материалов.  [c.62]

Отношение числа граммолекул ЗЮг к числу граммолекул щелочных окислов, умноженное на резразмерный коэффициент 1,5, учитывающий молекулярный вес, норнт название модуля жидкого стекла и характеризует данный конкретный состав. В зависимости от величины модуля жидкие стекла делятся на низкомодульные (до Л1 1 = 3,2) и высокомодульные (Л1д = 3,4-ь5). Лучшей адгезией к ме-та,ялу обладают низкомодульные жидкие стекла (о свойствах и характеристиках жидких стекол см. [49]).  [c.91]

Дальнейшее повышение к. п. д. при прочих равных условиях достигается применением селективных покрытий на застекленной поверхности опреснителя, благодаря чему она становится изоляцией. Стеклянная пластина, покрытая тонким слоем определенного материала, например двуокисью олова, несколько хуже пропускает солнечное излучение в области спектра 0,3—2,5 мкм, но зато почти полностью отражает длинноволновое излучение (область спектра 4—20 мкм) [204]. На рис. 8-37 приведены спектральные характеристики пропускания и отражения системы стекло-Ьпленка SnOa—F .  [c.225]

Халькогенидные стекла — некристаллические вещества, содержащие атомы халькогенов (серы, селена, теллура), получающиеся в результате охлаждения расплава. Они в основном нечувствительны к примесям, обладают симметричными вольт-ампер-ными характеристиками, претерпевают различные структурные изменения.  [c.360]

В период с 1958 по 1968 г. С. Овшинский открыл и исследовал необычные свойства переключения у халькогенидных стекол. Переключением называют способность вещества обратимо переходить из одного состояния в другое под влиянием какого-либо внешнего воздействия. Два рода переключения, существующие в халькогенидных стеклах, иллюстрирует рис. 11.15, где приведены вольт-амперные характеристики этих полупроводников. Рис. И.15,а соответствует так называемому пороговому переключению. Приложение к стеклу напряжения выше порогового (Уп) приводит к скачку вольт-амперной характеристики с ветви 1 на ветвь 2, что соответствует увеличению проводимости полупроводника примерно в миллион раз (состояние включено ). Если напряжение, приложенное к такому переключателю, находящемуся в проводящем состоянии, уменьшается до точки возврата, то стекло вновь переключается в состояние с малой проводимостью (ветвь /). Это соответствует состоянию выключено .  [c.370]

Проявление масштабного фактора тесно связано с влиянием состояния поверхности. В частности, длительное травление стекла плавиковой кислотой, удаляющее наружный слой и создающее идеально ровную поверхность, приводит к резкому снижению вероятности существования на поверхности опасных дефектов, и согласно статистической теории дефектов должно наблюдаться повышение прочности массивных образцов до прочности тонких стеклянных волокон. Эксперимент полностью подтверждает это предположение. ВЛИЯНИЕ СРЕДЫ Й СОСТОЯНИЯ ПОВЕРХНОСТИ НА ПРОЦЕССЫ РАЗРУШЕНИЯ. Состояние поверхности — один из важнейших факторов, влияющих на результаты механических испытаний образцов в лабораторных условиях. Наличие небольших выступов и впадин на плохо обработанной поверхности приводит к повышению концентрации напряжений. Поверхностные неровности могут играть роль хрупких трещин и значительно снижать определяемые испытаниями прочностные характеристики металла. Например, хрупкие в обычных условиях кристаллы каменной соли становятся пластичными, если при испытании их погрузить в теплую воду, растворяющую дефектный поверхностный слой (эффект Иоффе). Тщательная полировка поверхности металлических образцов приводит к увеличению измеряемых при растяясенпи характеристик прочности и пластичности.  [c.435]


Подобным испытаниям подвергаются хрупкие материалы и изделия из них. Стойкость к термоударам зависит от температурного коэффициента линейного расширения материала поэтому для приблизительной оценки этой характеристики можно пользоваться соотношением Alai, в котором А — коэффициент, определяемый механической прочностью и теплопроводностью материала — температурный коэффициент линейного расширения. При неоднородности материала, а также дефектах роверхности (царапины и т. п.) стойкость к термоударам сильно снижается, что легко объяснимо теорией прочности хрупкого тела. Некоторые материалы, например стекло, подвергаются травлению плавиковой кислотой для повышения стойкости к термоударам так же действует закалка.  [c.175]

В состав неорганических стекол входят стеклообразующие оксиды кремния, бора, фосфора, германия, мышьяка, образующие структурную сетку и модифицирующие оксиды натрия, калия, лития, кальция, магния, бария, изменяющие физико-химические свойства стекломассы. Кроме того, в состав стекла вводят оксиды алюминия, железа, свинца, титана, бериллия и др., которые самостояте.тьно не образуют структурный каркас, но придают необходимые технические характеристики. В зависимости от состава стекла подразделяются на силикатные (ЗЮг), алюмосиликатные (/М О . -ЗЮз), бороси-  [c.133]

За последние 10—15 лет промышленностью освоен и серийно выпускается ряд новых марок листовых электротехнических стекло-текстолитов, например стеклотекстолит марки СТЭФ, обладающий высокой механической прочностью при повышенных температурах, огнестойкие стеклотекстолиты СТЭБ и СТЭБ-Н, стеклотекстолит СТЭД с повышенными диэлектрическими характеристиками в условиях повышенной относительной влажности. Применение стеклопластиков в качестве электроизоляционного и конструкционного материала в электромашиностроении позволяет создавать электрические машины разных классов нагревостойкости, повышать их надежность в эксплуатации и решать яд новых технических задач.  [c.219]

Наиболее высокими свойствами обладает кварцевое стекло, выплавляемое из горного хрусталя или чистых кварцевых песков. Кварцевые стекла отличаются высокой оотической прозрачностью, механической прочностью при высоких температурах (свыше 1000° С), инертностью к действию многих химических реагентов, высокими электрическими характеристиками при нормальной температуре tg й = 0,0002 Вг = 3,8 р при 200 С около 10 Ом-м.  [c.237]

Для изготовления высокочастотных высоковольтных изоляторов применяют стеатитовую керамику, так как фарфор имеет сильную. зависимость электрических характеристик от температуры из-за наличия большого количества полевошпатового стекла с повы-1иенной электропроводностью. Стеатитовая керамика изготовляется на основе-тальковых минералов, основной кристаллической фазой которых является метасиликат магния MgO-SiOj. Стеатитовые материалы характеризуются высокими значениями р, в том числе при высокой температуре, малым tg б, за исключением материала группы 210 ГОСТ 20419—83, предназначенного для производства крупных высоковольтных изоляторов. Стеатитовая керамика характеризуется высокими механическими свойствами, стабильно-  [c.240]

Внешняя среда, примыкающая к краям трещин, может оказывать существенное влияние на развитие трещин. Например, при погружении стекла в воду эффективная величина у для стекла снижается на 25%. Механизм этого явления можно представлять себе следующим образом. В уравнении (3.8) величина (Ш является характеристикой материала, и ее моягно рассматривать независимо от внешних условий. Влияние внешних условий можно учитывать с помощью притоков физико-химической энергии,  [c.557]

Электролюминофоры. Люминофоры, в которых люминесценция возникает под воздействием прилагаемого электрического поля, называют электролюминофорами. Электролюминофор заключен между непрозрачным и прозрачным электродами, которые наносят на пластинку из стекла, слюды и т. п. Обычно используют либо композицию — смесь поликристаллического мелкодисперсного люминофора со связывающим диэлектриком (смолой), либо поликристаллические пленки люминофоров, получаемые осаждением газотранспортным методом или вакуумным напылением. Излучение электролюминесцентных источников света имеет высокую монохроматичность, малую инерционность и большую крутизну характеристики яркости высвечивания от напряжения. Основными составами являются соединения типа А — активированные различными примесями, в основном соединения цинка и кадмия ZnS, ZnSe, (Zn d)S и др. В качестве активирующих примесей используются Мп, А1, Ag, Си и др. Высвечивание сернистого цинка с разнообразными активаторами соответствует той или иной полосе спектра.  [c.205]

Были исследованы модельные стеклопластики на основе эпоксидного связующего ЭДТ-10 и многослойных стеклотканей, различающиеся по толщине, схемам переплетения и типам волокон. Для изготовления стеклотканей были использованы сплошные и полые (капиллярные) волокна из алюмобороси-ликатного стекла с парафино-эмульсионным замасливателем и высокомодульного стекла ВМ-1 с замасливателем типа 752. Модуль упругости и коэффициент Пуассона для алюмоборо-силикатных волокон 3 = 7,31 X X 10 МПа, Va = 0,25, для высокомодульных волокон ВМ-1 — а = = 10 МПа, = 0,25 упругие характеристики связующего ЭДТ-10 с = 2900 МПа, V = 0,35.  [c.98]

Электропроводность варистора определятся многими параллельными цепочками контактирующих зерен, причем пробивное напряжение контактов в различных цепочках (рис. 8-23,6) имеет большой разброс. Так, до значения приложенного напряжения Ui (рис. 8-23, е) ток идет только через сопротивление R, после чего при напряжениях Ui, t/,, Уз и последующих включаются друг за другом остальные параллельные цепочки зерен, и вольт-амперная характеристика представляет собой ломаную линию. В реальном варисторе таких цепочек может быть очень много, поэтому реальная вольт-амперная характеристика (рис. 8-23, г) представляет собой плавную кривую. Варисторы, изготовленные из несвязанных зерен карбида кремния, являются нестабильными, боятся тряски, ударов и легко изменяют свои характеристики. Поэтому зерна Si надо скреплять связующим веществом. В качестве связующих веществ используются глина, ультрафарфоровая масса, жидкое стекло, легкоплавкие стекла, кремнийорганические лаки и т. д. Материал с глинистой связкой называют /пиритом, со связкой из жидкого стекла—вилитом.  [c.259]


Смотреть страницы где упоминается термин СТЕКЛО Характеристики : [c.333]    [c.402]    [c.140]    [c.146]    [c.79]    [c.230]    [c.132]    [c.200]    [c.100]    [c.359]   
Материалы в машиностроении Выбор и применение Том 5 (1969) -- [ c.437 , c.438 ]



ПОИСК



Авиационные силикатные стекла и их характеристики

Источники накачки лазеров на неодимовом стекле и их характеристики

Оптические искажения в активных элементах и термооптические характеристики неодимовых стекол

Поляризационные характеристики излучения лазеров на неодимовом стекле

Похмурский, В. Б. Далисов, Я. П. Бродяк, О. Е. Сколоздра, Квачов. О некоторых характеристиках защитных покрытий, контактирующих с расплавом стекла

Стекло органическое светотехническое — Общая характеристика — Изготовление

Стекло техническое листовое безосколочное 466—468 — Прочность ударная и разрушаемость 468 — Свойства и применение 466 — Характеристики

Стекло техническое листовое безосколочное 466—468 — Прочность ударная и разрушаемость 468 — Свойства и применение 466 — Характеристики покрытиями

Стекло — Технические характеристик

Термооптичёские характеристики промышленных лазерных стекол

Характеристики промышленных неодимовых лазерных стекол



© 2025 Mash-xxl.info Реклама на сайте