Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая сталь Влияние на обрабатываемость

Сталью называют сплав железа с углеродом (до 2 %) и другими элементами. Большое влияние на обрабатываемость стали оказывает ее химический состав. С увеличением содержания углерода повышается механическая прочность стали и, как следствие, возрастает ее сопротивление резанию, но увеличивается шероховатость поверхности. При обработке стали с малым содержанием углерода (0,1. ..0,25 %) достигается лучшая шероховатость поверхности. По химическому составу стали подразделяют на углеродистые и легированные.  [c.30]


Непосредственное влияние охлаждающих свойств СОЖ на технологические параметры проявилось на размере отверстий при развертывании через воздействие на температурные деформации инструмента и обрабатываемой детали увеличение диаметра развертки вследствие нагрева вызывает разбивку отверстий, а увеличение диаметра детали — усадку. С увеличением температуры резания (или скорости резания) эти явления усиливаются. В частности, поэтому при обработке титановых сплавов, имеющих низкий коэффициент линейного расширения, отверстия получаются, как правило, с разбивкой, в то время как при сверлении углеродистых сталей в определенных условиях возникает усадка.  [c.161]

Скорость резания v, м/мин. На скорость резания при сверлении наибольшее влияние оказывают свойства обрабатываемого материала, подача и диаметр сверла. При обработке легированных сталей скорость резания на 10—30% ниже, чем при обработке углеродистых сталей, а при обработке нержавеющих, жаропрочных и титановых сплавов скорости резания не превышают 15—20 м/мин.  [c.192]

При сверлении на скорость резания наибольшее влияние оказывают свойства материала детали, подача и диаметр сверла. При обработке деталей из легированных сталей скорость резания на 10—30% ниже, чем при обработке деталей из углеродистых сталей, а при обработке деталей из коррозионно-стойких, жаропрочных и титановых сплавов скорости резания не превышают 15— 20 м/мин. Подача существенно влияет на скорость резания, так как повышаются температура в зоне резания, давление стружки на передние поверхности, а следовательно, и износ сверла. От правильного выбора скорости резания зависят стойкость и долговечность инструмента, качество обрабатываемых отверстий.  [c.174]

Подбирать режимы резания необходимо и с точки зрения стойкости абразивного инструмента. Износ шлифовального круга может происходить различным образом в зависимости от обрабатываемого материала, рода абразива и режима его работы. Ряд исследователей [87, 91 ] отмечает, что исходная твердость стали и характер термической обработки не оказывают существенного влияния на обрабатываемость ее шлифованием. Легирование стали добавками хрома, марганца, никеля незначительно ухудшает обрабатываемость, в то же время добавки вольфрама, кремния, титана и других элементов, значительно повышающих жаропрочность, резко затрудняют обработку шлифованием. Например, при шлифовании углеродистой стали [71 ] абразивная способность шлифовального круга в 20—40 раз выше, чем при обработке ж аропрочных сталей.  [c.372]


Остаточный аустеиит инструментальных сталей. Его влияние на свойства. Остаточный аустенит фиксируется в структуре закаленных сталей, содержащих более 0,4—0,5% С. Количество остаточного аустенита зависит от его состава, получаемого при нагреве до температуры закалки, условий охлаждения и в меньшей степени от величины зерна. Состав остаточного аустенита определяет его устойчивость при последующем отпуске. Он почти полностью превращается в результате нагрева при 200—350° С нетеплостойких углеродистых н низколегированных сталей и при 500—580° С теплостойких штамповых н быстрорежущих сталей, У полутеплостойких сталей с 6—18% Сг он устойчив до 450—500° С, вследствие чего практически полностью сохраняется при обработке на первичную твердость. Точно также он почти полностью сохраняется в структуре нетеплостойких многих полутеплостойких сталей после отпуска на высокую твердость и может значительно влиять на их основные свойства и почти не сохраняется в теплостойких и полутеплостойких сталях, обрабатываемых на вторичную твердость. Количество остаточного аустенита, присутствующего в инструментальных сталях различных классов после закалки, приведено ниже.  [c.381]

Теоретически производительность ЭХО находится в прямой зависимости от величины анодной плотности тока, что следует из закона Фарадея. Однако эта зависимость в реальных условиях нелинейна, так как величина выхода по току т) ф onst, что обусловлено характером пассивации, накоплением продуктов реакций, образованием пленок. Как показывают результаты многочисленных исследований, т] зависит от свойств обрабатываемого материала, вида электролита, его температуры, скорости потока, концентрации и pH, величины межэлектродного зазора и ряда других факторов. Существенное влияние на производительность ЭХО оказывают химический состав и структура обрабатываемого материала. Труднее обрабатываются стали с высоким содержанием элементов с резко отличающейся растворимостью [33, 791. Обнаружено снижение выхода по току при увеличении содержания углерода в углеродистой стали соответствующая эмпирическая зависимость имеет вид  [c.40]

Сравнительная сложность уравнения (67) и наличие взаимных, в ряде случаев еще недостаточно исследованных связей между некоторыми величинами, входящими в него, не позволяют пока использовать формулу (67) для непосредственного расчета сил Рг+. Вместе с тем достоинством этой формулы является то, что она учитывает не ТОЛ1КО разупрочнение материала, возникающее при нагревании заготовки плазменной дугой, но также и термические напряжения, влияющие на состояние обрабатываемого материала и оказывающие воздействие на процесс стружкообразования, а значит, и на силы В связи с этим анализ формулы (67) позволяет определить направление влияния на того или иного фактора и таким образом выяснить целесообразные пути наладки процесса ПМО в различных случаях. Из формулы (68) следует, что нагрев при ПМО необходимо проводить по-разному для различных групп металлов. Разделим условно все металлы, подвергающиеся обра- ботке с нагревом плазменной дугой, на три группы. Первая из них включает материалы, предел текучести которых ав(0) существенно снижается уже при нагреве до 200...300°С. К этой группе можно отнести стали 22К, 12Х18Н9Т и аналогичные им, а также титановый сплав ВТЗ-1. Вторая группа включает большинство углеродистых и легированных сталей, интенсивное разупрочнение которых начинается с температур порядка 300...400°С. Наконец, третью группу составляют жаропрочные материалы, предел текучести которых 08(0) незначительно меняется до температур 600...700°С. Как уже отмечалось, начало появления пластических деформаций в заготовке зависит от предела текучести обрабатываемого материала при данной температуре. Поэтому для создания временных термических напряжений в материалах третьей группы потребуются более высокие температуры нагрева, чем для материалов первой и второй групп. Жаропрочные сплавы следует обрабатывать в условиях высокотемпературного плазменного нагрева, что подтверждается работами, выполненными в Грузинском политехническом институте, ИЭС им. Е. О. Патона, ЦНИИТМАШе. Исследователи получили яаилучшие результаты при точении заготовок из жаропрочных материалов, нагретых к моменту подхода в зону резания до 700... 900°С. Для достижения столь высоких температур предварительного подогрева применяли два плазмотрона, а также нагрев осциллирующей дугой, что обеспечивало необходимое накопление теплоты в срезаемом слое металла. Значительный разогрев металла вызы-  [c.82]


Материал. Состояние стали (твердость, предел прочности на растяжение, структура материала) оказывает большое влияние на прочность зубчатого колеса, обрабатываемость резанием, стойкость режущего инструмента, производительность станка, деформирование при термической обработке, параметр шероховатости поверхности. При обработке цементуемых сталей хороших результатов достигают, когда заготовки перед механической обрг боткой подвергают изотермическому отжигу. Заготовки должны иметь перлитно-ферритную структуру и твердость НВ 170.......200. Для. заготовок из углеродист .1Х сталей рименяют норма-  [c.199]

Материал режущей части инструмента оказывает влияние на процесс образования ПС и начальные напряжения в связи с большей или меньшей его адгезионной способностью, т.е. со способностью слипаться с обрабатываемым материалом. При обработке углеродистых сталей твердосплавными инструментами основным элементом, шстивизирующим адгезионные процессы, являются карбиды вольфрама. С увеличением содержания карбидов вольфрама и титана в инструментальном материале увеличивается глубина распространения начальных напряжений растяжения, что связано с активизацией адгезионных процессов между передней, задней гранью инструмента и обрабатываемым материалом, приводящих к росту заторможенного слоя.  [c.164]

При резании пластичных материалов коэ( )фициент усадки больше, чем при резании материалов хрупких. Например, Кь при резании углеродистых сталей колеблется в пределах 2 — 6, а при резании чугуна в пределах 1,5 — 2,5. Чем прочнее и тверже материал обрабатываемой детали, тем меньше коэффициент усадки. Принципиальное влияние скорости резания на. коэ4х )ициент усадки стружки представлено на рис. 76. Кривая 1 соответствует резанию материалов, не склонных к наростообразованию. В этом случае по мере увеличения скорости резания коэффициент усадки стружки вначале быстро, а затем более медленно уменьшается. Указанное влияние скорости резания на Кь объясняется уменьшением коэффициента трения между стружкой и передней поверхностью при увеличении температуры на передней поверхности вследствие возрастания скорости резания.  [c.116]

Ультразвуковая обработка углеродистых сталей показала, что до-эвтектоидные стали с содержанием углерода менее 0,4% плохо обрабатываются ультразвуком. Если к преобразователю подводится мощность колебаний 2,5 кет на 1 кг обрабатываемого металла, то структура сталей 20, 30, 40 не изменяется. Структурные изменения в стали 40 наблюдались лишь при повышении мощности до 3,5 квтЫг. Под влиянием ультразвука грубая ферритная сетка, наблюдаемая в необработанных (контрольных) слитках, раздробляется, зерно становится более мелким.  [c.464]

Процессу резания свойственна очень высокая степень деформации и соответственно этому большая величина сдвигающих напряжений на условной плоскости сдвига. На рис. 63 показано сопоставление зависимостей между сдвигающими напряжениями и относительным сдвигом при резании и при механических испытаниях углеродистых и легированных сталей. Как видно, величина относительного сдвига при резании в 2,5 — 3 раза, а сдвигающих напряжений в 1,5 раза больше, чем при растяжении и сжатии. Характерным является то, что при такой высокой степени деформации срезаемого слоя напряжение сдвигу не зависит от условий резания, а определяется только свойствами материала обрабатываемой детали. Например, по данным Н. Н. Зорева [28], при резании детали из стали ЗОХ при изменении переднего угла резца в пределах 0—40° и скорости резания 45—145 м/мин значения сдвигающих напряжений на условной плоскости сдвига колеблются в пределах всего 7%. Такое же заключение можно сделать на основании рис. 63, где изменение подачи от 0,156 до 0,51 мм/об практически не вызывает изменения величины т. Незначительное влияние степени деформации на сопротивление деформации по условной плоскости сдвига объясняется тем, что при резании материал обрабатываемой детали претерпевает столь высокую дефор-мированность, что его запас пластичности исчерпывается, а упрочнение приближается к пре-  [c.104]


Смотреть страницы где упоминается термин Углеродистая сталь Влияние на обрабатываемость : [c.90]    [c.80]    [c.662]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.167 , c.170 , c.172 ]



ПОИСК



Р углеродистое

Сталь Влияние

Сталь Обрабатываемость

Сталь углеродистые

Сталя углеродистые

Углеродистая Обрабатываемость —



© 2025 Mash-xxl.info Реклама на сайте