Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамические критерии разрушения

Основное достижение Гриффитса как основателя теории разрушения тел с трещинами заключается в том, что он, рассматривая общее изменение энергии тела с увеличением длины трещины, дал термодинамический критерий разрушения. Трещина будет спонтанно распространяться под действием приложенной нагрузки только тогда, когда общая энергия системы при этом будет уменьшаться. Ценность энергетического подхода заключается в том, что, рассматривая изменение энергии тела в целом, можно не учитывать сильно деформированные области непосредственно у трещины и вывести формулы для напряжений разрушения. Общий подход к решению задач осуществляется во всех последующих разделах, однако интересно кратко проследить ход анализа самого Гриффитса.  [c.95]


Для обоснования достоверности термодинамического критерия разрушения В. В. Федоровым с сотрудниками был экспериментально исследован энергетический баланс процесса деформирования и разрушения широкого класса металлов и сплавов в отожженном и закаленном состояниях при циклическом нагружении образцов и в условиях абразивного износа (шлифования). Необратимо затраченную энергию циклических деформаций замеряли по методу динамической петли гистерезиса (погрешностью 3%), а тепловую энергию, рассеянную деформируемыми объемами в окружающую среду,— с помощью специального калориметра. Относительная погрешность при определении суммарного значения рассеянной тепловой энергии не превышала 1,5%. Было установлено, что плотность внутренней энергии и с ростом числа циклов нагружения возрастает, но к моменту разрушения образца всегда достигает одного и того же уровня независимо от амплитуды и частоты нагружения, близкого к и,= м.  [c.385]

Термодинамические критерии разрушения  [c.298]

Наряду с борновским существует другой критерий прочности кристаллов, физически менее обоснованный и ясный. Он основан на предположении о связи процессов разрушения и пластической деформации с плавлением, в связи с чем называется термодинамическим [263]. В рамках этого критерия теоретическая прочность связывается с основной характеристикой плавления — скрытой теплотой перехода. Поскольку последовательная логическая схема получения такого соотношения отсутствует, данный критерий получил различные математические формулировки [263-267]. Наиболее удачная из них [265] позволяет устранить существовавшее ранее расхождение (в 2 Ч- 5 раз) между теоретической и экспериментально наблюдаемой прочностью кристаллов. Успех термодинамического подхода обусловлен тем, что отнесенная к единице объема скрытая теплота плавления оказывается величиной того же порядка, что и предел прочности кристалла, а деформация разрушения соизмерима с величиной теплового расширения от данной температуры до температуры плавления. Хотя справедливость термодинамического критерия разрушения  [c.298]

В то же время основной задачей теории изнашивания является установление критериев, с помощью которых можно было бы предсказать скорость (или интенсивность) изнашивания, наступление предельного состояния поверхностных слоев, переходы от одного вида изнашивания к другому. Наиболее общим и перспективным в исследовании и описании процессов изнашивания является термодинамический подход, в основе которого лежат законы сохранения энергии и принцип увеличения энтропии при необратимых процессах (первое и второе начала термодинамики). Целесообразность такого подхода также объясняется тем, что в основе современных теорий прочности твердых тел и строения вещества лежат энергетические концепции, а процесс трения всегда сопровождается диссипацией энергии. При этом совокупность происходящих физико-химических процессов, обусловливающая изменение структуры материала, энтропии трибосистемы и ее изнашивание (разрушение), может быть описана с помощью законов неравновесной термодинамики и термодинамических критериев (энерге-  [c.111]


Неупругие деформации и необратимо затраченная за цикл энергия, а также их суммарные, относительные и удельные значения, соответствующие моменту разрушения, изменяются в широких пределах в зависимости от амплитуды напряжений и долговечности. Температура разогрева в деформируемых объемах материала и тепловая составляющая внутренней энергии, а также суммарные, относительные и удельные значения теплового эффекта и тепловой энергии, рассеянной в окружающей среде, также изменяются в широких пределах в зависимости от условий процесса. Поэтому указанные термодинамические характеристики процесса не могут быть приняты в качестве параметров повреждаемости и критериев разрушения металлов.  [c.90]

Структурная интерпретация потери устойчивости пластической деформации. Вероятностный критерий разрушения металлов. Теория самоорганизации в неравновесных термодинамических системах отводит важнейшее место моменту перехода в неустойчивое состояние. Именно в момент неустойчивости начинается переход к новому структурному состоянию, причем в этом новом состоянии свойства системы изменяются, на что мы указывали неоднократно. Но если система приобретает другие свойства, то и её развитие во времени происходит по законам, отличным от прежних. В неравновесной термодинамике момент потери системой устойчивости называют моментом бифуркации, поскольку, начиная с данного времени, система может развиваться по одному из двух возможных путей. Именно в этот момент огромное значение имеют случайные процессы, решающую роль в выборе пути развития играют флуктуации.  [c.218]

Кристалл, очищенный зонной плавкой, не содержит наследственных дефектов даже размером 0,3 мкм, но еще более убедительным является поведение цинка, в котором величина критического дефекта может доходить до нескольких миллиметров. Эксперименты, выполненные на кристаллах цинка, меньших по размеру, чем критический дефект, показали, что все равно разрушение происходит при низком уровне напряжений [8]. В этих чистых кристаллах создание зародыша трещины и большой концентрации напряжений путем взаимодействия дислокаций приводит к тому, что разрушающее напряжение скорее связано с пределом текучести (контролирующий механизм), а не с термодинамическим критерием Гриффитса.  [c.99]

Теория аморфизации под действием ионного легирования находится в стадии развития [168], однако одним из важнейших критериев является уровень накопленных напряжений, делающих термодинамически выгодным разрушение дальнего порядка атомов в кристаллической решетке. Известно [7], что аморфные материалы характеризуются высокой коррозионной стойкостью, износостойкостью, более высокой пластичностью и ударной вязкостью.  [c.103]

Обратимся сначала к борновскому критерию, согласно которому потеря механической устойчивости обусловлена структурным переходом [260]. Однако при этом не конкретизируется тип превращения, более того, оно не обязательно имеет характер структурного. Указанное выше совпадение характерных термодинамических параметров разрушения и плавления позволяет предположить, что основную роль играет неустойчивость решетки относительно плавления.  [c.299]

Из диаграммы следует, что при анализе эволюции системы при различных скоростях деформирования необходимо применять характерные для каждой области критерии. Отмечено, что для области I целесообразно использовать пластичность, твердость, предел прочности для области II — теплоемкость, температуру плавления, скрытую теплоту плавления, энтальпию для области III — скрытую теплоту испарения, температуру кипения. Этот вывод согласуется с предпосылками термодинамических теорий прочности, в основу которых положены термодинамические константы (скрытая теплота плавления, энтальпия), и кинетической теории С.Н. Журкова, связывающей максимальную энергию активации разрушения со скрытой теплотой испарения.  [c.151]

Такой подход позволил учесть внутренние процессы в материале при его деформировании и получить удовлетворительное соответствие с экспериментальными данными при статическом и циклическом нагружениях. В работе [22] также развивается термодинамический подход к описанию процесса разрушения. При этом за критерий прочности принимается предельный уровень накопленной в материале энергии [/ , величина которого не зависит от вида подводимой энергии и является константой материала. Условие прочности записывается в виде (1.68), где 17 (г, i) и и г, 0) — соответственно уровень удельной внутренней энергии в локальных объемах материала в момент времени t до испытания А 7 г, 1) —изменение удельной внутренней энергии в локальных объемах материала за время деформирования, которая представляет собой энергию, идущую на образование дефектов, и энергию, выделяющуюся в виде тепла г — параметр, характеризующий координаты локальных объемов материала.  [c.21]


На основе представлений о разрушении как предельной работе микронапряжений на пути пластической и упругой деформации предложен энергетический критерий в деформационных терминах, единый как для малоцикловой, так и многоцикловой усталости, а также критерий длительного статического разрушения с экспериментальной проверкой их в условиях статического и циклического нагружений, в том числе программного (одночастотное и двухчастотное, нагружение с временными выдержками, многоступенчатое, с чередованием видов нагружения и т. д.) с привлечением теплофизического анализа и проведением термодинамического эксперимента.  [c.271]

Аналогичным образом можно конструировать другие простыв феноменологические схемы дискретного описания процессов разрушения слоистых и других композиционных материалов, основываясь на структурном подходе и учитывая взаимное влияние компонентов при разрушении. Общим требованием при зтом является термодинамическая непротиворечивость вводимых схем разрушения и алгоритмов их реализации, которая для адиабатических процессов сводится к тому, чтобы на дискретных элементах энергия разрушения, или диссипация внутренней энергии, была положительной неубывающей функцией, а для разрушенного элемента выполнялись определенные инвариантные свойства. Критерием адекватности построенных моделей реальным физическим явлениям служит проверка близости результатов экспериментальным данным. Следует отметить, что в литературе практически отсутствуют прямые экспериментальные данные о динамике процессов разрушения внутри тел и композиционных материалов, хотя современная физическая аппаратура позволяет визуально представить этот процесс с помощью различных томографов, плотномеров, рентгеновских датчиков и съемок в рентгеновских лучах.  [c.33]

Достижение предельного состояния при реализации критического распределения напряжений и деформаций на фронте трещины характеризует переход к глобальному (нестабильному) разрушению. Однако в зависимости от условий нагружения при росте трещины могут реализоваться условия для локальной нестабильности разрушения. Наиболее полно спектр пороговых значений К , отвечающих смене диссипативных структур, реализуется при циклическом нагружении и постоянной нагрузке низкого уровня. Как уже отмечалось в предыдущей главе, микроразрушение отрывом связано с достижением критического соотношения теоретических прочностей на сдвиг и на отрыв, контролируемого постоянной Л= [Lm/H G/E], полученной на основе идеи о независимости удельной энергии разрушения от вида подводимой энергии. Эта идея отражает принцип самоорганизации процессов диссипации энергии в металлах и сплавах при том или ином виде воздействия. Термодинамические аспекты этой идеи развиты В. В. Федоровым [110]. Согласно его концепции, критерием повреждаемости локального объема является критическая плотность внутренней энергии At/ , накопленной при его предельной деформации. Это позволило с единых позиций рассмотреть кинетику повреждений металлов и сплавов при ползучести, усталости, статическом деформировании, трении и т. п. Концепция с позиций термодинамики объясняет постоянство критической плотности энергии деформации и ее независимость от внешних факторов, что согласуется с концепцией [71].  [c.112]

За параметр повреждаемости и критерий разрушения твердого тела принимается плотность внутренней энергии и, накопленной в деформируемом элементе тела. В соответствии с термодинамической теорией тело считается разрушенным, если хотя бы в одном макрообъеме, ответственном за разрушение, плотность внутренней энергии достигает предельной (критической) величины u . Этому моменту соответствуют образование в теле трещины критического размера и резкая локализация процесса в устье трещины и ее развитие (движение) по механизму Гриффитса. Условие разрушения записывается в виде  [c.88]

Таким образом, согласно прямой (первой) теореме подобия в подобных явлениях движения жидкости должны соблюдаться условия (4.50) — (4.58). Рассмотрим, какое значение имеют критерии (инварианты) подобия, или, как часто говорят, числа Эйлера, Рейнольдса и Пекле, при изучении вопросов прочности. С характеристиками жидкости обычно сталкиваются при изучении закономерностей разрушения конструктивных элементов в тепловых полях и газовых потоках, особенно при теплосменах. Работами сотрудников ИПП АН УССР и других исследователей показано, что термодинамические параметры газового потока и его химический состав оказывают очень большое влияние на долговечность лопаток газовых турбин [62]. Небольшое изменение этих параметров либо введение в поток ничтожных добавок сернистого газа или солей морской воды (до 10 мгм на 1 м воздуха) изменяет долговечность более чем на порядок.  [c.136]


Смотреть страницы где упоминается термин Термодинамические критерии разрушения : [c.13]    [c.297]    [c.191]   
Смотреть главы в:

Синергетика конденсированной среды  -> Термодинамические критерии разрушения



ПОИСК



Критерий разрушения

Термодинамический критерий



© 2025 Mash-xxl.info Реклама на сайте