Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЭВМ Применение при испытаниях материалов и элементов конструкци

Кроме того, с применением методов тепловой микроскопии могут быть решены задачи, в которых в основном рассматривается механическое поведение материала либо в условиях, реально приближающихся к эксплуатационным, либо при технологической обработке материала. При этом главная цель исследований заключается в изучении характера накопления повреждений и разрушения материала для обоснования методов расчета на прочность элементов конструкций. Информативность метода при этом определяется приближением размеров образца к стандартным (для механических испытаний), а также возможностью программированного задавать нагрузку, моделирующую реальные температурные и силовые воздействия.  [c.292]


Величина возможной ошибки зависит от объема испытаний (числа образцов), конструктивных особенностей испытуемых элементов, материала, условий испытания и методики обработки их результатов. Повысить точность оценки характеристик механических свойств заданного элемента конструкции при определенных условиях испытаний можно только путем увеличения объема испытаний и применения более рациональной методики статистической обработки результатов, использующей максимум информации, полученной при экспериментах.  [c.44]

Полнота интерпретации получаемых при испытании элементов конструкций результатов обусловлена использованием инструментированных методов их проведения и в первую очередь возможностью корректного определения полей температур и деформаций. Задача осложняется высокими, как правило, температурами и работой материала с максимальными напряжениями за пределами упругости при малоцикловом нагружении. Наличие среды (потоков газа и жидкости высоких энергий и значений параметров) делает актуальной разработку методов измерения напряжений деформаций и температур в указанных условиях с применением соответствующей защиты датчиков.  [c.162]

Контроль материалов. В некоторых случаях неправильное применение материала было основной причиной опасного состояния. Например, деформированная в горячем состоянии штампован сталь Н-13 (5% Сг) удовлетворяла требованиям, предъявляемым к ракетным двигателям и баллонам, работающим под давлением, если ее применяли в случае тонких сечений. Этот материал имеет высокую удельную прочность и высокий предел прочности при повышенных температурах. Из материала с такими свойствами изготовляли силовые рычаги и кольца толкающего механизма металлоконструкции для испытания больших ракет (Риф-фин и Амос, 1961 г.). Эти элементы конструкции имели поперечное сечение 500 X 75 мм и 90 X 90 мм соответственно. Условный предел текучести стали после термообработки составлял 150 кгс/мм . Один из элементов каждого типа катастрофически разрушился при достижении половины расчетной нагрузки во время пробного испытания. Одно кольцо, показанное на рис. 14, разломилось без приложения внешней нагрузки, под действием высоких остаточных напряжений, возникших при горячей посадке. В результате исследования разрушенных деталей пришли к выводу, что необходимо увеличить радиус галтелей в надрезах, произвести повторный отпуск, а также полную повторную аустенитизацию и отпуск. При последних двух видах термообработки минимально возрастала ударная вязкость по Шарпи, первоначально равная  [c.285]


В предыдущем разделе сформулированы критерии прочности. Для их правильного применения необходимо разобраться в самих понятиях прочность и разрушение . Обычно считается, что конструкция утратила прочность, если за счет частичного или полного разрушения ее элементов или вследствие недопустимой деформации она перестала выполнять свои функции. В этом смысле прочность является интегральным свойством конструкции. Но критерии прочности связаны с напряженным состоянием в точке конструкции и поэтому определяют локальные свойства как напряженного состояния, так и материала. Чтобы понять соотношение между интегральным и локальным в прочности, рассмотрим сначала такие конструкции, у которых напряженное состояние во всех точках или в существенной части конструкции одинаково (однородно). Простейшим примером такой конструкции является стержень постоянного сечения, находящийся в состоянии центрального растяжения иод действием приложенных к его концам сил. Во всех его поперечных сечениях возникают только постоянные по сечению напряжения (Тх- Именно такое напряженное состояние и создается в образце при испытаниях на растяжение. Если этот стержень выполнен из пластичного материала, то при Gx = сгт пасту-  [c.361]

Для определения ресурса работы элементов конструкций, подвергаемых воздействию циклических нагрузок, с учетом трещпно-стойкости материала необходимы достоверные данные о закономерностях развития усталостных трещин при эксплуатационных условиях их работы [1]. В настоящее время эти данные можно получить только экспериментально в результате испытания образцов на циклическую трещиностойкость при аналогичных условиях исследования [2]. Достоверность и воспроизводимость результатов таких испытаний обусловлена принятой методикой исследования и зависит от способа их аналитической обработки. Применение принципов линейно-упругой механики разрушения для описания явления распространения усталостной трещины [3] обеспечило теоретическую основу для интерпретации результатов исследований, облегчило их использование в расчетной практике и способствовало дальнейщему интенсивному развитию таких исследований.  [c.284]

В данной статье показаны возможности инженерного решения проблемы остановки трещин в конструкциях. Разра ботаны методы для измерения величин трещиностойкости, которые управляют процессом остановки трещины в толстостенных элементах конструкций. Для большого класса конструкций могут быть проанализированы пути применения этих величин трещиностойкости — как на основе динамического, так и на основе более приближенного, статического, подходов. Такие возможности существуют сейчас в основном для условий линейно-упругого деформирования, соответствующих плоской деформации. Для решения практических задач об остановке трещины при высоких напряжениях, распространение которой сопровождается большой пластической деформацией, необходимы дополнительные исследования. Они включают изучение пластического поведения материала и его взаимодействия с трещиной в течение коротких промежутков времени при высоких скоростях деформирования, типичных для быстрого роста и остановки трещины. Необходимы также методы анализа остановки трещины при смешанном разрушении и разрушений полностью путем среза. Исследования корреляций с результатами стандартных испытаний, таких, как испытания по Шарпи, испытания падающим грузом и обычные испытания для определения трещиностойкости, могут со временем облегчить задачу оценки трещиностойкости по отношению к остановке.  [c.248]

Широкое применение конструкций из композитов немыслимо без точного определения их несущей способности и, следовательно, без умения надежно предсказывать предельные напряжения и деформации каждого конкретного композита в условиях эксплуатации. Как правило, основным источником информации о прочностных свойствах композита являются испытания в условиях одноосного напряженного состояния, тогда как в реальных конструкциях материал находится в сложном напряженном состоянии. Элементы современных силовых конструкций из композитов составляются обычно из различно ориентированных однонаправленных слоев, уложенных в определенной последовательности по толщине. Прочностные свойства слоистых композитов в отличие от изотропных и однородных материалов обладают отчетливо выраженной анизотропией. Более того, достижение  [c.140]


Тем не менее применение полимеров в гидросистемах еще тормозится, так как недостаточно их производство, отсутствуют расчетные данные для создания тех или иных конструкций, не разработаны методики проектирования уплотнений из пластмасс. В настоящее время совершенно отсутствуют нормативные данные по применению пластмасс в машиностроении. Поэтому проектирование пластмассовых уплотнений необходимо производить, используя практические данные многих исследований. Целесообразно проектирование осуществлять на o HOi e испытаний, проводимых при тех условиях, в которых будет работать уплотнение. Причем представляется более правильным принимать в расчет те параметры, которые по своим качествам давали основание сделать принципиальное заключение о возможности использования выбранного материала в качестве уплотняющего элемента в системах высокого давления.  [c.63]

В настоящее время накоплен обширный экспериментальный материал по данным испытания различных легированных сталей, например марганцевых, кремниевомарганцевых, хромомолибденовых, с применением количественных (ИМЕТ-4, ЛТП МВТУ) и технологических проб (Рива, TS, крестовая). При этом для каждой из систем легирования изучено влияние содержания различных легирующих элементов (С, Мп, Si, Сг, Мо, В и др.) и вредных примесей (S, Р и др.) на сопротивляемость образованию холодных трещин, и определены эмпирические зависимости эквивалента углерода, устанавливающие допустимые соотношения между элементами, входящими в состав сталей. Эти соотношения не имеют универсального характера, так как зависят от ряда факторов, например конструкции сварного соединения и его жесткости, структурного класса присадочного или электродного материалов, способа и режимов сварки. Эти факторы изменяют не только уровень напряжений и характер их распределения в сварных соединениях, но и кинетику структурных изменений, степень развития химической неоднородности по границам зерен околошовной зоны вблизи линии сплавления со швом, содержание водорода и другие особенности, обусловливающие образование холодных трещин при сварке. Наиболее существенны при прочих равных условиях жесткость соединения и структурный класс металла шва. В связи с этим использование данных об эквивалентах углерода ограничивается обычно частными случаями, связанными с предварительными сравнительными оценками различных плавок стали или способов их выплавки в исследовательских целях. После этого, как правило, проводятся испытания стали с помощью технологических проб, в наибольшей степени соответствующих реальным условиям сварки конструкции соединений и технологическим факторам.  [c.174]


Смотреть страницы где упоминается термин ЭВМ Применение при испытаниях материалов и элементов конструкци : [c.458]    [c.89]    [c.184]    [c.15]   
Испытательная техника Справочник Книга 2 (1982) -- [ c.505 , c.508 ]



ПОИСК



Испытание Применение

Испытание материалов

Испытание материалов и испытание конструкций

Испытание материалов и конструкций

Испытание элементов конструкций

Испытания Элементы

Испытания конструкций

Конструкции Применение

Элемент Применение

Элемент конструкции

Элементы Материалы



© 2025 Mash-xxl.info Реклама на сайте