Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение уравнения теплопроводности методом преобразования Лапласа

Решение уравнения теплопроводности методом преобразования Лапласа  [c.296]

Решение задач теплопроводности методом преобразования Лапласа существенно упрощается благодаря наличию таблиц изображений. В результате преобразования решать приходится обыкновенное алгебраическое уравнение, после решения которого применяют обратное преобразование (по таблицам), являющееся решением исходного дифференциального уравнения. Широкое использование операционного метода при решении самых разных задач теплопроводности нашло в работе Теория теплопроводности А. В. Лыкова (М., 1967).  [c.107]


Нахождение температурного поля твердого тела в задачах теплопроводности связано с решением дифференциальных уравнений с разнообразными краевыми условиями. Необходимо иметь способы эффективного решения этих задач с целью практического использования. Остановимся на наиболее общем и простом по технике вычисления методе преобразования Лапласа, т. е. применим функциональное преобразование Лапласа  [c.473]

Если / h, X, у, t) есть линейная функция h, то при линейных граничных условиях решения уравнения (10) находят обычными методами теории теплопроводности, часто применяют интегральные преобразования, в особенности преобразование Лапласа при сложных граничных условиях или сложной форме границ пользуются приближенными методами.  [c.210]

Дифференциальное уравнение (1-11-38) было решено для полупространства, когда ядра интегральных соотношений а (6) и X (9) являются степенными или экспоненциальными функциями времени б. Наличие интегральных соотношений в уравнении теплопроводности (1-11-38) не вносит больших трудностей при его решении методом интегрального преобразования Лапласа, поскольку интегрирование в этих соотношениях производится по времени в пределах от О до со [Л. 1-50]. Особый интерес представляют температурные волны в материалах с памятью, они имеют свою особенность, скорости их распространения и коэффициенты затухания отличны от аналогичных соотношений в классической теории теплопроводности.  [c.92]

Исследование уравнений теплопроводности (параболического и эллиптического типа) содержится в курсах математической физики [43, 46, 49]. Здесь рассматриваются задачи теплопроводности, имеюшие наибольшее практическое значение и иллюстрирующие применение основных методов теории теплопроводности. К ним относятся задача о нестационарном теплообмене пластины произвольного профиля, решение которой основано на аппроксимации температуры по толщине пластины по степенному закону ( 3.2) задачи о стационарном и нестационарном осесимметричном плоском температурном поле диска ( 3.3 и 3.6) задача о нестационарном осесимметричном теплообмене полого цилиндра конечной длины с окружающей средой, исследованная с помощью интегрального преобразования Лапласа и метода разделения переменных ( 3.7), и др.  [c.57]


Применение интегрального преобразования Лапласа к решению дифференциальных уравнений теплопроводности имеет ряд преимуществ перед классическими методами интегрирования дифференциальных уравнений и перед некоторыми другими методами интегральных преобразований.  [c.54]

Решение задачи операционным методом. Дифференциальное уравнение теплопроводности после применения преобразования Лапласа будет иметь такой же вид, как и в предыдущей задаче, т. е.  [c.87]

В настоящей главе изучаются квазистатические температурные напряжения в кусочно-однородных телах. Здесь рассматривается квазистатическая задача термоупругости для составной полосы-пластинки, нагреваемой путем конвективного теплообмена с внешней средой, температура которой является функцией времени, С использованием интегрального преобразования Лапласа нестационарная задача теплопроводности для рассматриваемой системы приведена к решению обыкновенного частично вырожденного дифференциального уравнения с кусочно-постоянными коэффициентами, построенного методом И. Ф Образцова— -Г Г. Онанова [117]. Затем в замкнутом виде находятся выражения соответствующих найденному температурному полю температурных напряжений, исследуется влияние теплоотдачи, способов закрепления краев на характер распределения температурных напряжений в стеклянной полосе-пластинке с подкрепленным коваровым стержнем краем.  [c.259]


Смотреть страницы где упоминается термин Решение уравнения теплопроводности методом преобразования Лапласа : [c.123]   
Смотреть главы в:

Теплопроводность твердых тел  -> Решение уравнения теплопроводности методом преобразования Лапласа



ПОИСК



Лаплас

Лапласа метод

МЕТОД Теплопроводность

Метод преобразований

Метод преобразования Лапласа

Метод преобразования Лапласа и Z-преобразования

Метод решения уравнений

Преобразование Лапласа

Преобразование уравнений

Решение уравнения Лапласа

Решения метод

Уравнение Лапласа

Уравнение метода сил

Уравнение теплопроводности



© 2025 Mash-xxl.info Реклама на сайте