Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие уравнения равновесия тонких оболочек

Общие уравнения равновесия тонких оболочек  [c.425]

Наиболее простым вариантом общей теории оболочек является безмоментная теория, которая пшроко применяется для расчета различных инженерных конструкций и строительных сооружений. Это объясняется тем, что безмоментная теория довольно удовлетворительно описывает поведение тонких оболочек под действием различных нагрузок, с которыми приходится иметь дело в инженерной практике. Простота и достоинство безмоментной теории заключается не только в существенном математическом упрощении основных дифференциальных уравнений теории оболочек, а также и в том, что во многих случаях результаты основного этапа теории, заключающегося в определении характера передачи усилий из уравнений равновесия, справедливы для любых тонких оболочек независимо от их структуры и характера деформирования. Структурная неоднородность материала оболочки но толщине проявляется на последующих этапах решения задачи, связанных с определением деформированного состояния и характера распределения напряжений по толщине оболочки.  [c.104]


Для случая упругого материала, когда материал следует закону Гука, явные решения можно получить, рассмотрев вместо уравнений равновесия принцип возможных работ, воспользовавшись выражением (6.14) для энергии упругой деформации и выражениями (6.18) для деформаций. Однако энергетические методы имеют много недостатков таких, как тот, что с их помощью можно получить решения только в виде рядов, которые в случае исследования локальных явлений сходятся, как уже отмечалось ранее, медленно. Поэтому в данном параграфе будут полуяены общие уравнения равновесия тонких оболочек. Для tOjo чтобы придать. выбираемым соотношениям между деформациями и перемещениями необходимую общность, будем стараться сначала вводить только такие допущения, которые соответствуют основополагаю-  [c.425]

Для получения двзгмерных уравнений тонких оболочек часто используются пo oiбы упрощения общих нелинейных уравнений равновесия или движения путем отбрасывания в них некоторых членов ввиду их малости или приближенного интегрирования уравнений движения по одной из координат, например толщине. Однако не всегда эти способы являются корректными, так как может быть нарушено свойство энергетической согласованности модели, т. е. закона сохранения механической мощности.  [c.34]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]


Во-первых, общие уравнения нелинейной теории упругости используются для обоснованного вывода уравнений устойчивости для тонких и тонкостенных тел. Работы этого направления (В. В. Новожилов, 1940, 1948 В. В. Болотин, 1956, 1965 А. И. Лурье, 1966, и др.) уже обсуждались в 3. Во-вторых, решения задач, полученные на основе теории упругости, могут быть использованы для оценки точности и установления границ применения известных приближенных решений. К этому направлению относятся работы Л. С. Лейбензона (1917) и А. Ю. Ишлинского (1954). Заметим, что в этих работах в качестве уравнений для описания форм равновесия, смежных с невозмущенной формой, предлагалось использовать классические уравнения теории упругости внешние силы входили при этом только в возмущенные граничные условия. Этот подход обсуждался недавно А. Н. Гузем (1967). В-третьих, необходимость в привлечении уравнений теории упругости возникает в задачах об устойчивости пластин и оболочек, находящихся в контакте с упругим материалом пониженной жесткости. Применительно к слоистым пластинам с мягким наполнителем этот подход развивался А. П. Вороновичем (1948), В. Н. Москаленко (1964) и другими. Устойчивость цилиндрических оболочек с мягким упругим ядром рассматривалась А. П. Варваком (1966). Типичным для этих задач является применение теории пластин и оболочек к несущим слоям и трехмерной теории упругости — к заполнителю.  [c.346]

С. Большие деформации пластинок и оболочек. Теория тонких пластинок и оболочек была развита по преимуществу для целей изучения колебаний этих тел и затем уж применялась к вопросам статическим. Соответствующие смещения при колебаниях всюду крайне незначительны. Обычная приближенная теория изгиба пластинок под действием давления основывается на распространении на более общие случаи результатов некоторых точных нли приближенных решений уравнений равновесия упругого тела ). В этих решениях предполагается, что смещение, если не считать того, которое соответствует движениям тела как абсолютно твердого, всюду весьма мало по сравнению с линейными его размерами. Таким образом теория будет применима до тех пор, пока прогиб будет составлять весьма малую долю от толщины пластинки. Теории Кирхгофа и Клебша и теория гл. XXIV имели своей целью указать пределы возможных смещений средней поверхности, при которых оболочка не будет еще перенапряжена. Условие этого заключается в том, что при больших деформациях оболочки средняя поверхность должна либо точно налагаться на недоформированную среднюю поверхность оболочки, либо должна быть близка к поверхности, налагающейся на нее.  [c.580]

Решение проблемы равновесия пластинок и оболочек при упругопластических деформациях, как и при чисто упругих, основывается на двух основных постулатах Кирхгоффа-Лява. Первый состоит в том, что совокупность материальных частиц, расположенных на нормали к серединной поверхности оболочки до деформации, расположена также на нормали к серединной поверхности её после деформации, и потому деформированное состояние оболочки определяется только деформированным состоянием её серединной поверхности. Этот постулат, по существу, говорит о том, что каждый кусок оболочки, размеры серединной поверхности которого малы сравнительно с общими её размерами (и соизмеримы с толщиной), находится в условиях, весьма близких к чистому изгибу и кручению, наложенным на растяжение и сдвиг без изгиба и кручения. Второй постулат состоит в том, чю все компоненты напряжений, имеющие направление нормали к серединной поверхности, весьма малы сравнительно с другими. Оба эти постулата находятся в согласии друг с другом и означают, что всякий тонкий элементарный слой материала, парадлельный серединной поверхности оболочки, находится в условиях плоского напряжённого состояния или, точнее, напряжения, действующие в его плоскости, значительно больше других напряжений. В справедливости такого предположения можно убедиться из анализа порядка различных компонентов напряжений в тонкой оболочке, исходя из уравнений равновесия.  [c.153]

В то время как Ясинский и Энгессер занимались исследованием частных случаев продольного изгиба стержней, важная работа по общей теории устойчивости упругих систем была опубликована Брайэном (G. Н. Вгуап) ). Последний показал, что теорема Кирх-гоффа об единственности решений уравнений теории упругости применима лишь в тех случаях, когда все измерения тела являются величинами одного и того же порядка. Для тонких же стержней, пластинок и оболочек возможна более чем одна форма равновесия, отвечающая той же системе внешних сил, так что вопрос об устойчивости таких форм принимает важное значение в практике.  [c.359]



Смотреть страницы где упоминается термин Общие уравнения равновесия тонких оболочек : [c.252]   
Смотреть главы в:

Балки, пластины и оболочки  -> Общие уравнения равновесия тонких оболочек



ПОИСК



Оболочки тонкие

Оболочки уравнения

Общие уравнения

Общие уравнения равновесия

Уравнения равновесия для для оболочек

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте