Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Торий - иттрий

Для повышения устойчивости горения дуги и стойкости электрода в состав вольфрамового электрода вводят обычно 1,5—3% окислов активирующих редкоземельных металлов (тория, лантана, иттрия), повышающих эмиссионную способность электрода.  [c.51]

Оксид бериллия Оксид тория Оксид иттрия  [c.164]

В работе [2] методами микроструктурного и рентгеновского анализов исследовали сплавы, выплавленные в дуговой печи в атмосфере аргона из йодидного тория и иттрия чистотой >99,9%, гомогенизированные при 750°. По данным этого исследования границы двухфазной области при 750° проходят при 53,97 и 73,1 (31 и 51 ат) % Th. Большие расхождения (больше чем на 10 ат.%) между данными [1] и [2], по-видимому, обусловлены применением в работе [1] иттрия с большим содержанием примесей. В связи с отсутствием в работе [2] данных о положении границ двухфазной области при других температурах на рис. 495 приведена диаграмма состояния системы У — Th, построенная в работе [1].  [c.780]


Добавка к вольфраму окислов лантана, тория или иттрия снижает эффективный потенциал ионизации, в результате чего облегчается зажигание дуги, увеличивается устойчивость дугового разряда и повышается стойкость электрода. Появляется возможность значительно повысить плотность тока, так как при этом конец электрода не изменяет формы в процессе сварки (табл. 7-8).  [c.294]

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), не растворяющихся в матричном металле, позволяет сохранить высокую прочность материала до 0,9—0,957 пл- В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсно-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.  [c.300]

Создание жаропрочных сплавов для работы при температурах 1300 - 1800°С возможно в результате дисперсного упрочнения тугоплавкими тонкодисперсными оксидами. Так, вольфрам упрочняют диоксидом тория молибден - диоксидом циркония цирконий -оксидом иттрия и т.д. Разработаны сплавы системы W - Мо, W - Мо - Re с диоксидом тория, которые обладают высокими значениями прочности, жаропрочности и модуля упругости (см. табл. 26).  [c.415]

Указывается [77], что двуокись тория с добавкой 15 мас.% окиси иттрия является лучшим материалом твердого электролита, который устойчив в течение длительного времени в натрии при 316° С и был испытан кратковременно при температуре выше 420° С. Как показали экспериментальные исследования, твердый электролит на основе двуокиси циркония нельзя применять длительное время при этой температуре. Здесь непрерывно слабеет генерация э. д. с., что приписывается частичному восстановлению циркония натрием.  [c.292]

Кальций используется для получения редкоземельных металлов, скандия, иттрия, тория, плутония и ванадия главным образом путем восстановления фторидов этих металлов. Все указанные выше процессы проводят в тщательно контролируемой инертной атмосфере, чтобы получить металлы высокой степени чистоты.  [c.21]

Хромит иттрия, как и хромит лантана, является перспективным материалом для электродов МГД-генера-торов и других устройств.  [c.223]

Неплавящиеся металлические электроды для дуговой сварки в защитном инертном газе применяются в виде прутков диаметром 2...6 мм из вольфрама марок ЭВЧ, ЭВЛ, ЭВИ, ЭВТ (табл. 2.24). Наличие активирующих присадок - оксидов лантана, иттрия и диоксида тория, способствует улучшению зажигания дуги, стабилизирует процесс ее горения, повышает стойкость вольфрамового электрода, позволяет повышать плотность тока при сварке. Содержание атмосферных газов в металле, наплавленном электродами с покрытиями различных видов даны в табл. 2.25.  [c.83]


Введение в вольфрам присадок диоксида тория, оксидов лантана и иттрия с меньшей работой выхода электронов усиливает их эмиссию с поверхности катода. Например, плотность тока, эмитируемого с поверхности катода из тарированного вольфрама при температуре 3140 К, примерно такая же, как у катода из чистого вольфрама при температуре 4000 К. Поэтому использование электродов с активирующими присадками позволяет значительно увеличить допустимый сварочный ток и работоспособность электрода.  [c.91]

В качестве неплавящихся электродов применяют вольфрамовые стержни (ГОСТ 23949—80), содержащие активирующие добавки оксида лантана (ЭВЛ), иттрия (ЭВИ) или диоксида тория (ЭВТ) для облегчения зажигания и поддержания горения дуги,  [c.206]

Вольфрамовые электроды применяются при дуговой сварке в инертных газах — аргоне и гелии, а также при плазменных процессах сварки и резки, наплавки и напыления. Их выпускают в соответствии с ГОСТ 23949—80 из чистого вольфрама и вольфрама с активирующими присадками (диоксид тория, оксиды лантана и иттрия). Размеры электродов, предельные отклонения и химический состав должны соответствовать указанным в табл. 4.6.  [c.90]

То же, на молибденовом керне, покрытом сплавом никель—молибден и нанесенной на него металлической губкой, покрываемые двойными карбонатами (Ва, 5г) СО3, в некоторых типах двойными стронциевокальциевыми карбонатами То же, но с керном из тантала или тантало-ниобиевого сплава с танталовой губкой, покрываемые окисью тория, окисью иттрия и их смесями  [c.228]

В качестве эм иссиовных веществ, которыМ и заполняются поры губки в металлогубчатых катодах, используются двойные п тройные карбонаты, преимущественно мелкозернистые, окись тория, окись иттрия н другие тугоплавкие окислы и -их смеси иногда в карбонаты добавляется небольшое количество порош ка никеля, повышающего стойкость. катодов к искрению (импульсные приборы с большим градиентом поля у катода).  [c.266]

В инфракрасной области спектра используются главным образом штифт Нернста и силитовый стержень — глобар. Штифт Нернста представляет собой прессованный стерженек из тонко размельченных окислов тория, циркония, иттрия и др. Он имеет большой отрицательный температурный коэффициент электрического сопротивления и поэтому требует предварительного подогрева. Штифт обладает высокой излучательной способностью и при температуре около 1500° С спектральное распределение его энергии почти совпадает с распределением энергии абсолютно черного тела при той же температуре.  [c.391]

Неплавящиеся электроды изготовляют по техническим условиям из вольфрама, а также из специального электротехнического угля и синтетического графита. В качестве вольфрамовых электродов применяют прутки из чистого вольфрама, а также из вольфрама с присадками окиси лантана, тория или иттрия, что обеспечивает увеличение устойчивости дугового разряда и новышение стойкости электродов. Вольфрамовые электроды применяют при плазменной и дуговой наплавках в защитном газе. Наплавку вольфрамовыми электродами выполняют переменным или постоянным током прямой полярности, что обеспечивает их минимальный расход. Угольные электроды для наплавки изготовляют из электротехнического угля в соответствии с ГОСТ 10720—75.  [c.50]

НЕРНСТА ШТИФТ (Н е р н с т а лам п а) — стержень из окислов циркония, тория и иттрия, па1галиваемый электрич. током и применяемый как источник излучения. В холодном состоянии Н. нг. но проводит элоктрич. тока и поэтому перед включением должен быть предварительно разогрет (обычно  [c.422]

Образованию пятна на катоде способствуют введение добавки тория, иттрия или лантана к вольфраму (обычно до 1...2%), лучший теплоотвод (меньший вылет) электрода и более острая заточка его рабочего конца. Поверхность торированного, иттри-рованного или лантанированного вольфрама, имеющего по сравнению с чистым W пониженную температуру, практически не оплавляется в широком диапазоне токов (100...400 А). Коническая вершина электрода сохраняет свою форму, что обеспечивает сжатие дуги у катода.  [c.100]

Металлопористый вольфрамово-бариевый термокатод — пористая вольфрамовая губка, внешняя поверхность которой покрыта пленкой бария, снижающей работу выхода и обеспечивающей получение большого тока ТЭ. В процессе работы пленка бария разрушается вследствие ионной бомбардировки и под воздействием газов, выделяющихся из деталей приборов. Возобновление пленки происходит вследствие поступления бария из вольфрамовой губки при термическом разложении содержащегося в ней активного вещества. Существует несколько типов металлопаристых термокатодов камерные, или L-катоды — состоят из камеры, заполненной активным веществом — карбонатом бария-стронция — и закрытой стенкой-губкой, наружная сторона которой является эмиттирующей поверхностью пропитанные — пористая губка из вольфрама, рения или молибдена, поры которой заполнены активным веществом — алюминатом или вольфраматом бария-кальция и прессованные. Последние изготовляются в виде таблеток или керамических трубок, путем спрессовывания смеси из порошков оксида иттрия или оксида тория и порошков тугоплавких металлов (вольфрам, молибден, тантал). Катоды этого типа так же, как и оксидпо-ториевый, работают при температурах 1700—1800° С и предназначены для использования в СВЧ-приборах, главным образом в магнетронах.  [c.571]


Боридный термокатод — катод на основе металлоподобных соединений типа МеВе, где iMe — щелочноземельный, редкоземельный металлы или торий. В качестве термокатода наиболее широко применяется гекса-борид лантана, реже — гексабориды иттрия и гадолиния и диборид хрома. Покрытие оксидного слоя тонкой пленкой осмия понижает работу выхода катода и увеличивает его эмиссионную способность. Термоэмиссионные катоды из гексаборида лантана работают при температуре 1650 К и обеспечивают получение плотности тока ТЭ до 50 А/см . Высокая механическая прочность и устойчивость таких катодов к ионной бомбардировке позволяет использовать их в режиме термополевой эмиссии (при напряженности внешнего электрического поля 10° В/см значительная часть эмиссионного тока обусловлена туннелированием электронов сквозь барьер). В этом режиме катод из гексаборида лантана при температуре 1400—1500 К может эмитировать ток с плотностью до 1000 A/ м . Катоды из гексаборида лантана не отравляются на воздухе и устойчиво работают в относительно плохом вакууме. Срок их службы не зависит от давления остаточных газов в приборе до давлений порядка 10 Па. Эти катоды используются в ускорителях и различных вакуумных устройствах.  [c.571]

Цирконий, стабилизи- рованный магнием Высокочистый алю МИНИН Иттрий, стабилизирован- Торий ный цирконием Магний  [c.152]

Новый тип композиционного материала — керамика из компонентов окиси тория и окиси иттрия запатентован в США под названием иттрийлокс . Он обладает высокой жаростойкостью и прозрачностью в ультрафиолетовой и инфракрасной области спектра. Его широко применяют в смотровых окнах высокотемпературных печей. По сравнению с оптическими силикатными стеклами у Него низкий показатель преломления, исключающий оптическое рассеяние.  [c.61]

Сплавы алюминия и магния в значительной степени способствовали успеху битвы 1за килограммы. Ведь маг,ний легче алюминия, его удельный вес всего 1,74 г/см . Самому магнию было трудно состязаться с алюминием из-за невысокой коррозионной стойкости, возможного брака при литье и относительно небольшого температурного потолка эксплуатации. Однако сплавы магния, легированные торием, иттрием, неодимом и другими присадками, из-за высокой теплоемкости оказались прекрасными конструкционными материалами, особенно для кратковременной эксплуатации в температурном интервале 350— 450°. Они нашли применение в ракетостроении. Их использовали для обшивки корпуса, топливных и кислородных баков, баллонов пневмосистем, стабилизаторов и других частей американских ракет Юпитер , Атлас , Титан , Поларвс и спутников Авангард и Дискаверер .  [c.113]

Металлический корпус датчика присоединен к циркуляционному натриевому контуру. В корпусе находится керамический стакан из смеси окисей иттрия и тория. Герметизация контура осуществлена путем замораживания натрия в зазоре между стаканом и корпусом при помощи холодильника. Ионный ток, значение которого зависит от концентрации кислорода, измеряется микроамперметром с большим внутренним электрическим сопротивлением. Основные проблемы использования таких датчиков связаны с обеспечением достаточно продолжительного срока службы керамики в натриевой среде. По сообщению [16] два прибора удовлетворительно служили в течение пяти месяцев при =370°С на реакторе EBRII. Близкие результаты получены также в работе [17].  [c.186]

Тантало-ниобиевые сплавы (до 85—96% ниобия) марок ТНИ и ТНТ с присадками окислов иттрия или тория обладают наряду с высокой эмиссией хорошими пластическими свойствами в отожженном состоянии. Они легко активируются при относительно низкой температуре 1000—1500 °С).  [c.60]

Атом иттрия имеет довольно большие размеры. Лишь с некоторыми металлами иттрий может образовывать твердь1е растворы замещения. Как и следовало ожидать, с редкоземельными металлами и торием иттрий образует твердые растворы почти в любых соотношениях. Иттрий и магний характеризуются существенной взаимной растворимостью в твердом состоянии. Иттрий и другие металлы проявляют незначительную взаимную растворимость. Коллинз и сотр. [241 сообщили, что при добавлении иттрия железо, хром, ванадий, ниобий и некоторые их сплавы становятся пирофорными.  [c.256]

НОЙ рекристаллизации, а также повышает в большинстве случаев стойкость сплавов к окислению при высоких температурах. Характерным примером может служить нержавеющая сталь типа 446 (25% хрома), которая противостоит окислению на воздухе до 1100° при добавлении 1% иттрия нержавеющая сталь этого типа устойчива к окислению при температурах до 1370°. Сопротивление коррозии повышается в сущности так же, как и при добавлении к этим сталям 5% алюминия, однако иттрий предотвращает нежелательный рост зерна, вызываемый добавкой алюминия. Повышение жаростойкости, вероятно, является результатом образования более прочной окисиой плспки, в которой окись иттрия вместе с окисями железа и хрома сгюсоб-ствует меньшей ее проницаемости. Добавление к сплаву, содержащему 1% иттрия. 1"6 тория или 3% алюминия, приводит к образованию окисной пленки, подобной эмали, устойчивой к нагреванию и тепловым ударам до 1425°. Устойчивость к окислению не наблюдается у обычных аустенит-ных нержавеющих сталей марки 18-8 и проявляется до некоторой степени лишь у более высоколегированных аустенитных сталей, например стали марки 310.  [c.257]

Актиноиды. р-Фазы (кубические объемпоцентрированные) иттрия и тория образуют непрерывный ряд твердых растворов фазы, устойчивые при комнатной температуре, образуют твердые растворы в широкой области [6J. С ураном иттрий не смешивается ни в расплавленном, ни в твердом состоянии [11]. Шейнгарц [171 предложил диспергировать уран в иттрии и использовать такой материал в качестве тепловыделяющих элементов в ядерных реакторах, что облегчило бы проблему радиационных повреждений. Еще раньше упоминалось об использовании иттриевых контейнеров для жидких сплавов урана.  [c.259]


Ионный обмен рекомендуется для получения соединений скандия высокой чистоты при очистке его от наиболее трудноот-деляемых ионов, таких, например, как торий, иттрий и РЗЭ. Все эти элементы очень близки по своим химическим свойствам и поэтому при отделении от них скандия с помощью ионного обмена на универсальных ионитах (типа КУ-2) обычно используют комплексообразующие реагенты, находящие применение в технологии разделения РЗЭ. Необходимо отметить, что широко применяемые при разделении РЗЭ ионы-замедлители, например медь, не нашли использования в технологии очистки скандия. Это связано с тем, что ионы скандия и ионы-замедлители вымываются практически вместе и поэтому необходима дополнительная очистка от них скандия.  [c.111]

Показана принципиальная возможность извлечения и концентрирования ряда элементов из морской воды с использованием хелатных смол Хелекс-100 и Пермутит S1005, содержащих аминодвууксусные группировки. Серебро, висмут, кадмий, кобальт, церий, медь, индий, марганец, молибден, скандий, торий, вольфрам, ванадий, иттрий и цинк извлекаются полностью, ртуть, рений и олово — на 85—90% [198].  [c.197]

На урановых заводах в Канаде на сброс направляют большое количество отработанных растворов, практически не содержащих урана, но содержащих редкоземельные элементы и торий. Эти растворы появляются в результате сернокислотного выщелачивания урановых руд и извлечения урана из фильтрованных растворов методом ионного обмена. Минералы браннерит, уранинит и ураноторит, из которых выщелачивается уран, содержат лантан, иттрий, церий, празеодим, неодим, самарий, иттербий, торий и меньшее количество диспрозия и эрбия. При нынешнем методе выщелачивания в раствор переходят лишь 20 % общего количества редких земель. Однако вместе с ураном и торием выщелачиваются приблизительно - -75 % иттрия [242]. Редкие земли в твердых хвостах находятся в нерастворившемся монаците. Торий из отработанных растворов можно извлечь экстракцией первичными или вторичными аминами [243]. На одном из заводов в настоящее время извлекают групповой концентрат редких земель из отработанных растворов с помощью экстракции алкилфосфорной кислоты. Этот концентрат поступает в США. для дальнейшей очистки. Канадское Горное управление проводит исследования, направленные на разработку методов индиви-232  [c.232]

Вольфрамовые электроды диаметром 0,2... 12 мм изготавливают из прутков чистого вольфрама - это электроды марки ЭВЧ. Чтобы повысить устойчивость дуги, уменьшить оплавление торца электрода и попадание вольфрамовых включений в шов, в вольфрам добавляют в виде окислов активирующие элементы с малой работой выхода электронов лантан, иттрий или торий. Электроды из лантаниро-ванного вольфрама обозначают ЭВЛ-10, из иттрированного -ЭВИ-30, из торированного - ЭВТ-15. Цифры в обозначении марки электрода указывают на количество активирующей присадки в десятых долях процента. Наиболее стойки иттрированные электроды. Использование торированных электродов ограничено торий радиоактивен и нужно соблюдать правила работы с радиоактивными веществами.  [c.158]


Смотреть страницы где упоминается термин Торий - иттрий : [c.31]    [c.239]    [c.208]    [c.570]    [c.201]    [c.554]    [c.848]    [c.392]    [c.230]    [c.232]    [c.233]    [c.242]    [c.235]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Торий - иттрий



ПОИСК



Иттрий

Торий



© 2025 Mash-xxl.info Реклама на сайте