Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сера-титан

Плавку на шихте из легированных отходов ведут без окисления примесей. Шихта для такой плавки должна иметь меньше, чем в выплавляемой стали, марганца и кремния и низкое содержание фосфора По сути это переплав Однако в процессе плавки примеси (алюминий, титан, кремний, марганец, хром) окисляются. Кроме этого, шихта может содержать оксиды После расплавления шихты из металла удаляют серу, наводя основной шлак, при необходимости науглероживают и доводят металл до заданного химического состава. Затем проводят диффузионное раскисление, подавая на шлак мелкораздробленный ферросилиций, алюминий, молотый кокс. Так выплавляют легированные стали из отходов машиностроительных заводов,  [c.38]


Расплавленная сера химически весьма активна и реагирует почти со всеми металлами. Она сильно разъедает медь, олово и свинец, меньше — углеродистую сталь и титан и незначительно — алюминий.  [c.141]

Жаропрочные сплавы на никелькобальтовой основе содержат жаропрочные и тугоплавкие металлы, а также агрессивные по отношению к кислороду элементы - титан, цирконий, ниобий. Сплавы содержат 10 - 12 полезных элементов, 4-8 нежелательных (кремний, марганец, железо, ванадий) и вредные (сера, фосфор, свинец, висмут и др.) элементы.  [c.267]

Углерод, связывая молибден и вольфрам в карбиды, уменьшает количество этих элементов в твердом растворе и тем самым отрицательно влияет на жаропрочность. Поэтому легирование такими элементами, как титан, ниобий, тантал, связывающими углерод, приводит к увеличению жаропрочности Обычно в жаропрочных сталях аустенитного класса углерода содержится около 0,1%. Жаростойкость снижается при введении в сталь легкоплавких и на растворимых в железе металлов (свинец, висмут, и др.), а также образующих с железом легкоплавкие эвтектики (сера, селен).  [c.102]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

Сера и фосфор — вредные примеси. Сера способствует образованию трещин, а фосфор — резкому снижению ударной вязкости стали. Хром увеличивает прочность, прокаливаемость, сопротивление ползучести без снижения пластичности. При содержании хрома свыше 12 % сталь становится коррозионно-стойкой в атмосфере и во многих других промышленных средах. Никель — повышает прочность, пластичность, ударную вязкость и прокаливаемость, снижает температуру перехода в хрупкое состояние. Молибден делает аустенитную сталь более жаропрочной и коррозионно-стойкой в ряде высокоагрессивных сред. Титан и ниобий увеличивают прочность и жаропрочность сталей, а вольфрам— жаропрочность высоколегированных сталей.  [c.223]


Другая серия опытов, проведенных в течение пяти лет в условиях приморского влажного субтропического климата, была посвящена изучению вопросов контактной коррозии титановых сплавов. Результаты опытов показали, что титан и его сплавы как в отдельности, так и в контакте являются коррозионностойкими не только в условиях атмосферы, но и в море на разных глубинах (3- 8 м). Отмечено, что обрастание на титане меньше, чем на поверхности нержавеющих сталей. Контакт титановых сплавов (АТЗ, 0Т4) с углеродистыми и низколегированными сталями и со сплавами алюминия в условиях морской атмосферы ускоряет процесс разрушения последних.  [c.84]

В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонность стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49].  [c.39]

Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).  [c.66]

Горячие соли. Общепринято, что, хотя чистый титан и устойчив против высокотемпературного солевого коррозионного растрескивания, большинство сплавов проявляют некоторую степень чувствительности к КР- Влияние состава и термической обработки особенно полно не аргументировано, однако могут быть сделаны следующие качественные наблюдения. В работе [166] использованы гладкие плоские образцы для определения чувствительности к КР серии бинарных сплавов в среде воздух—хлор при 427 С. Было показано, что наиболее вредными элементами, которые способствуют растрескиванию при наименьших концентрациях, были А1, 5п, Си, V, Сг, Мп, Ге и N1. Элементами, требующимися в больших концентрациях для активизации растрескивания, были 2г, Та и Мо. В большинстве опубликованных классификаций указывается, что а-сплавы имеют тенденцию к большей  [c.373]

ЛСЧ-2 190—229 Серый чугун, легированный хромом, никелем, титаном и медью предназначен для работы в паре с термически обработанным валом  [c.141]

АСЧ-3 160—190 Серый чугун, легированный титаном и медью предназначен для работы в паре с сырым валом  [c.141]

Элементы, входящие в состав указанных инструментальных материалов углерод, кислород, кремний, алюминий, фосфор, сера, ванадий, титан, хром, марганец, железо, кобальт, никель, вольфрам — могут быть активированы. В результате активации будет получен изотоп соответствующего элемента с присущим ему излучением, периодом полураспада и другими характеристиками.  [c.98]

Железо, алюминий, никель и кобальт являются основными компонентами. Медь, титан и ниобий относятся к легирующим присадкам. Углерод, сера, фосфор, марганец и кремний — примеси, допустимое содержание которых составляет доли процента. Исключением является только кремний, который в зависимости от процентного содержания никеля является или вредной примесью или легирующим элементом, Влияние содержания элементов на свойства сплавов приведено в табл. 24.  [c.97]

В сталях всех марок присутствуют постоянные примеси. Некоторые примеси (марганец, кремний) необходимы в металле по условиям технологии выплавки стали, другие (вредные) примеси (сера, фосфор) не поддаются полному удалению. Постоянный характер носят также так называемые скрытые примеси (кислород, водород, азот), содержание которых мало. К специальным примесям относят легирующие добавки для придания стали определенных свойств (никель, молибден, ванадий, титан и др.), а также углерод, марганец, кремний. В марках легированных металлов и сплавов указывается наличие тех или иных элементов буквами русского алфавита (табл. 2, стр. 5—6).  [c.11]


Палладий Pd Платина Pt Плутоний Ри Празеодим Рг Рений Re Родий Rh Ртуть Hg Рубидий Rb Рутений Ru Самарий Sm Свинец РЬ Селен Se Сера S Серебро Ag Скандий S Стронций Sr Сурьма Sb Таллий Т1 Тантал Та Теллур Те Тербий ТЬ Титан Ti Торий Th Тулий Ти  [c.9]

Спектральный анализ дает возможность определить все основные элементы легированной стали хром, молибден, вольфрам, марганец, кремний, ванадий, титан, ниобий, никель. Углерод, серу и фосфор методом спектрального анализа определить не удается. Точность анализа достаточна для определения марки стали.  [c.65]

АЧС-2 180—229 8,83 90,0 0,2 1,76 18,0 Перлитный серый чугун, легированный хромом, никелем, титаном и медью, предназначенный для работы в паре с термически обработанным валом  [c.483]

АЧС-3 160—190 5,88 60,0 0,75 4,41 45,0 Перлитно-ферритный серый чугун, легированный титаном и медью, предназначенный для работы в паре с сырым и термически обработанным валом  [c.483]

Химический состав. Влияние углерода, кремния, марганца и серы на скорость распада цементита в первой стадии графитизации показано на фиг. 72—77. Фосфор в белом чугуне (0,1—0,2%) практически не влияет на скорость первой стадии графитизации хром весьма сильно тормозит распад цементита алюминий, медь, никель, кобальт и титан ускоряют распад цементита.  [c.547]

Б. Низколегированный перлитный серый чугун. В состав низколегированного чугуна входят хром, никель, титан, медь, фосфор, молибден, реже алюминий, ванадий в различных сочетаниях. Причем, содержание, по крайней мере, одного из перечисленных элементов составляет свыше 0,3% до 1,0% (реже до 1,5—2,0%).  [c.98]

Сера а (м елтая) Сера (103 ), i Серебро Стронций Сурьма Таллий а Таллий 3 Тантал Теллур Титан а Титан (900 ) Торий  [c.320]

Антифрикционные чугуны (ГОСТ 1585-57). Серые чугуны с пластинчатым графитом. АСЧ-1, легированный хромом и никелем, и АСЧ-2, легированный хромом, никелем, титаном и медью, предназначены для работы в паре с тер-  [c.316]

Серый Пластин- чатая АСЧ-1 АСЧ-2 АСЧ-3 Чугун, легированный хромом и никелем Чугун, легированный хромом, никелем, титаном и медью Чугун, легированный титаном и медью  [c.12]

При температуре до 35°С коррозионная стойкость титана в аэрированных растворах фосфорной кислоты удовлетворительна при концентрации не выше 30% (рис. 91). С повышением температуры граница устойчивости титана значительно смещается в сторону меньших концентраций. При 100° С устойчивость титана сохраняется в кислоте концентрации менее 3%. Зависимость скорости коррозии титана от концентрации серной кислоты имеет сложный характер. Это объясняется тем, что серная кислота меняет свои свойства с изменением степени гидрата-и,ми, зависящей от концентрации. Характер этой зависимости при 40°С показан на рис. 192, на котором наблюдается два максимума скорости растворения титана — при концентрациях 40 и 75%. При достижении первого максимума серная кислота имеет высокие значения электронроводно-сти н концентрации водородных ионов процесс выделения водорода при этом усиливается вследствие адсорбции водорода титаном. Второй максимум соответствует восстановлению серной кислоты до сероводорода и свободной серы.  [c.283]

На грифитизацию чугуна существенное влияние оказывает углерод, кремний, никель, алюминий, медь и титан, которые ускоряют процесс графитизации. Такие элементы, как хром, марганец, вольфрам, молибден, сера и кислород, наоборот, затрудняют гра-фитизацию и способствуют получению сорбитообразного перлита.  [c.61]

Цирконий является карбидообразующим элементом по аналогии с титаном. Это приводит к уменьшению склонности стали к росту зерна. Высокое химическое сродство к кислороду и сере обеспечивает его применение как добавки для размельчения структуры, повышения технологической пластичности и трещиноустойчи-вости металла при ковке и литье.  [c.83]

Марганец, с одной стороны, являясь аустенитообра-зующим элементом, с другой — повышает температуру плавления сернистых эвтектик, препятствуя развитию красноломкости. При содержании десятых долей процента марганца растворимость серы в железе понижается в десятки раз. Подобно марганцу, но в меньшей степени действуют и другие элементы (хром, титан, цинк, бериллий). Никель, кобальт и молибден снижают температуру плавления сернистой эвтектики и в этом отношении являются вредными элементами в кремнистой стали.  [c.507]

Азот значительно охрупчивает титан сплавы с>0,05 /о N не имеют практического применения. Кислород при содержании до 0,5 % не ухудшает пластичности технического титана, однако для титановых сплавов кислород следует считать вредной примесью. Углерод — слабый упрочнитель, но при содержании >0,2 % появляется хрупкая карбидная фаза. Водород считают наиболее вредной примесью, так как он вызывает хрупкость [1]. Сера также понижает пластичность.  [c.85]

Металлид П1зА1 превосходит промышленные никелевые сплавы по жаростойкости, но отличается от них малыми прочностью (Ов=300-р -Ь400 МПа) и пластичностью. Легирование его хромом, вольфрамом, титаном и другими элементами позволяет улучшить механические свойства даже при наличии примесей (до 0,003 % каждой) серы, фосфора, свинца, висмута и сурьмы (табл. 85).  [c.189]

Соединения с водородом. Титан образует с водородом гидрид TiH2 с широкой областью гомогенности (от 48 до 67,7% атомн.) на диаграмме состояния. Гидрид титана представляет собой хрупкое вещество серого цвета и при нагреве в вакууме разлагается. Его можно получить восстановлением двуокиси титана гидридом кальция. Гидрирование металлического титана можно применять для получения титанового порошка.  [c.358]

В системах с ограниченной растворимостью образуются связи второго типа. Обратимся к композиту никель — вольфрам. Согласно Хансену и Андерко [14], никелевый сплав с 38% вольфрама находится в равновесии с твердым раствором на основе вольфрама, содержащим малые количества никеля (менее 0,3%). Такое равновесие предполагает равенство химических потенциалов. Этот принцип был использован Петрашеком и др. [33] при разработке сплава на Ni-основе для композита никелевый сплав — вольфрам. Вначале был использован сплав Ni-S0 r-25W. Затем в него были добавлены титан и алюминий. Во второй серии сплавов содержание вольфрама было понижено он был частично заменен другими тугоплавкими металлами ниобием, молибденом и танталом. Совместимость этих сплавов с вольфрамовой проволокой оказалась выше, чем у стандартных жаропрочных сплавов, но все же ниже, чем у сплавов, легированных только вольфрамом. Дальнейшее существенное улучшение, совместимости достигается добавками алюминия и титана, однако механизм влияния этих элементов на совместимость отличен от рассматриваемого здесь регулирования химических потенциалов. По заключению авторов, во избежание существенного уменьшения сечения вольфрамовой проволоки за счет диффузии следует использовать проволоку диаметром 0,38 мм. После выдержки при 1366 К в течение 50 ч глубина проникновения составляла 26 мкм, что соответствует коэффициенту диффузии (2-f-5) -10 ы / . Уменьшением сечения. волокна за счет диффузии можно объяснить более крутой наклон кривых длительной прочности в координатах Ларсена — Миллера для композита по сравнению с проволокой.  [c.132]


С помощью спектрального анализа с некоторыми ограничениями в стали и чугуне выявляются марганец, хром, медь, ванадий, вольфрам, кобальт, никель, титан и магний. Однако содержание углерода этим методом можно определить лишь для простых углеродистых сталей. Количественного спектрального анализа углерода, фосфора, серы и кремния в легированных сталях не делают, поэтому, если изменяется лишь процентное содержание этих составляющих, стали рассортировать спектральным методом лельзя.  [c.119]

Высококачественные серые чугуны с перлитной основой, модифицированные чугуны, специальные чугуны, легированные марганцем, титаном, ванадием, хромом, никелем и молибденом, азотируемые хромомолибденоалюминиевые стали 35ХМЮА и 38ХМЮА  [c.232]

Титан Т1 (Titanium). Порядковый номер 22, атомный вес 47,90. Аморфный титан является серым порошком в чистом виде кристаллический титан ещё не получен. Температура плавления титана очень высока ISIS", < = 5100° плотность 4,5. Титан на воздухе при низкой температуре довольно устойчив. При повышенной температуре (600 ) соединяется с кислородом с образованием двуокиси Ti02, являющейся амфотерным, но с преобладанием кислотных свойств окислом. Титан  [c.354]

Условные обозначения марок проволоки состоят из индекса Св (сварочная) и следующих за ним цифр и букв. Цифры, следующие за индексом Св, указывают среднее содержание углерода в сотых долях процента. Химические элементы, содержащиеся в металле проволок, обозначены следующими буквами А — азот (только в высоколегированных проволоках) Б — ниобий В — вольфрам Г — марганец Д — медь М — молибден Н — никель С — кремний Т — титан Ф — ванадий X — хром Ц — цирконий Ю — алюминий. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, содержащихся в небольших количествах, цифры не проставляют. Буква А на конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную частоту металла по содержанию серы и фосфора. В проволоке марки Св-08АА сдвоенная буква А указывает на более низкое содержание серы и фосфора по сравнению с их содержанием в проволоке марки Св-08А.  [c.325]

При нагреве, а также в расплавленном состоянии титан энергично взаимодействует с газами, углеродом, серой и большинством металлов, что определяет особенности его получения и обработки. Соединения титана с углеродом (Ti ), и кислородом (TiOj) очень прочны и не восстанавливаются до чистого металла даже наиболее сильными восстановителями. Титан высокой степени чистоты (99,8% Ti) получают путем термического разложения четырехиодистого титана в вакууме, а технический титан — восстановлением четыреххлористого титана магнием или натрием в атмосфере инертного газа—аргона.  [c.302]

Титан Ti (Titanium). Металл серо-стального цвета. Суш,ествует в двух формах  [c.378]


Смотреть страницы где упоминается термин Сера-титан : [c.214]    [c.83]    [c.74]    [c.298]    [c.180]    [c.357]    [c.183]    [c.187]    [c.264]    [c.372]    [c.42]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Сера-титан



ПОИСК



Еременко В. Н., Листовничий В. Е., Литвиненко В. М Дилатометрическое исследование сплавов титана с фосфором и серой

Титан

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте