Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платина-титан

В качестве материала нерастворимых анодов используются в основном платина и ее сплавы. Как правило, аноды изготавливают из биметалла платина — титан или платина — ниобий. Методы нанесения платины на подложку различны (гальванический, диффузионный, взрыв, прокатка) в зависимости от конструктивных особенностей и размеров анодов, а такл<е условий их эксплуатации. Технические характеристики анодов, полученных различными методами нанесения платины, существенно различны, однако практическое применение получили все методы.  [c.70]


В хромовой кислоте любой концентрации при температурах кипения отличаются высокой стойкостью свинец, серебро, платина, титан и тантал. Весьма стойки-в этих условиях природные кислотоупоры, стекло, керамика, фарфор.  [c.535]

IV. Медь, хром, никель, серебро, золото, платина, титан, кобальт, родий и его сплавы. Нержавеющие стали. Графит.  [c.188]

Стойкость различных металлов против коррозионно-эрозионного воздействия жидкого натрия различна. Высокой стойкостью в натрии обладают никель, хром, молибден, железо, цирконий ограниченно устойчивы титан и нержавеющая сталь, а углеродистая сталь, алюминий, платина неустойчивы. В наибольшей степени требованиям современной техники удовлетворяют аустенитная нержавеющая сталь и цирконий, обладающие оптимальным сочетанием требуемых свойств.  [c.560]

Жидкий бром способен химически взаимодействовать со многими металлами при обычных температурах. Он заметно разрушает углеродистую сталь и титан, меньше — никель и незначительно — железо, свинец, платину и золото.  [c.141]

Электролитическое осаждение платины и палладия на титан  [c.76]

При электролизе с нерастворимыми анодами вместо графитовых лучше применять платинированные титановые аноды. Получают нх, следующим образом титан обезжиривают в парах трихлорэтилена, травят в кислом растворе, содержащем ионы фтора, после этого наносят слой платины (завешивая детали под током), из раствора следующего состава (г/л) при режиме электролиза  [c.76]

Поляризационные кривые, приведенные на рис. 15, снятые в щелочном электролите на платинированном чистом титане, показывают, что процесс разряда комплексных ионов платины на чистом  [c.77]

Из рассмотрения всех известных к настоящему времени сведений о строении сплавов системы титан — платина [11, 12, 14, 19, 20, 24, 25] следует, что диаграмма состояния этой системы [22] требует пересмотра и уточнения.  [c.189]

Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра.  [c.149]

В — при т. кип. в растворах (платина, тантал, титан),  [c.235]

В — от об. до т. кип. в дистиллированной, умягченной, природной, питьевой воде и воде высокой степени чистоты (платина и ее сплавы, золото, молибден, тантал, титан, вольфрам, цирконий). И — платиновые аппараты для получения воды с высокой удельной проводимостью.  [c.258]


В — от об. до т. кип. в растворах любой концентрации, а также при доступе воздуха, но в отсутствие более сильных окислителей (платина, иридий, титан).  [c.286]

В — от об. до т. кип. в растворах любой концентрации (платина, золото, молибден, тантал, титан, вольфрам, цирконий).  [c.358]

В — от об. до 100°С в растворах хромовой кислоты любой концентрации, а также в смеси с серной кислотой (платина, тантал, титан). И — нагреватели для смеси хромовой и серной кислот (тантал) Укп < 0,05 мм/год.  [c.496]

Платина абсолютно не подвергается коррозии в морских атмосферах и в морской воде. В условиях погружения в морскую воду она чаще всего применяется в виде покрытия анодов в системах защиты с наложенным током (платинированный титан или тантал), а также в анодной системе свинец—платина. Все типы платинированных анодов для систем с наложенным током очень эффективны. Например, на титане или тантале платиновое покрытие толщиной 2,5 мкм позволяет использовать плотности тока свыше 10 А/дм . Потери при окислении для платиновых анодов в морской воде принимают равными 6 мг/А-год [117].  [c.163]

Очень тонкая пленка платины на титане, например пленка толщиной 0,25 мкм на титановом стержне или диске с медной сердцевиной (для улучшения электропроводности). Напряжение между анодом и катодом около 12 В  [c.175]

Титан практически не подвергается коррозии и по химической стойкости превосходит драгоценные металлы (золото, платину). Сроки службы машин с деталями из титановых сплавов намного выше, чем у деталей из других материалов. Столь ценные свойства титана открывают ему широкие перспективы применения в турбинах, ракетах, самолетах и многих других машинах и установках.  [c.141]

Палладий Pd Платина Pt Плутоний Ри Празеодим Рг Рений Re Родий Rh Ртуть Hg Рубидий Rb Рутений Ru Самарий Sm Свинец РЬ Селен Se Сера S Серебро Ag Скандий S Стронций Sr Сурьма Sb Таллий Т1 Тантал Та Теллур Те Тербий ТЬ Титан Ti Торий Th Тулий Ти  [c.9]

Золото, серебро, платина, медь, олово, никель,кобальт Тантал, ниобий, титан, торий, церий.ва надий, уран  [c.529]

Алюмин пй Вольфрам Железо Золото Кобальт Магний Медь Молибден Никель Ниобий Олово Платина Свинец Серебро Титан Хром Цинк Чугун  [c.189]

Платина твердая при 1480 С. . . Платина жидкая Платинородий (90% 10 / ). ... Родий твердый. Родий жидкий. Серебро твердое жидкое. . . Свинец жидкий. Тантал твердый Титан твердый. Титан жидкий. Торий твердый. Торий жидкий. Углерод твердый Уран твердый. Уран жидкий. Хром твердый. Хром жидкий. Цирконий твердый Цирконий жидкий Сталь твердая. . Сталь твердая угле родистая. ... Сталь жидкая. . Чугун твердый. . Чугун жидкий при 1540 С. . ,  [c.307]

В целях экономии часто применяот катод, представляющий собой металл - носитель, покрытый слоем платины. Металлом - носителем могут быть серебро, медь, бронза, купроникель, железо, свинец, латунь, титан. Стоимость такого катода составляет примерно 30 % стоимости системы анодной защиты. Размеры их невелики (6,2Б ом в длину и 4 сы в диаметре), поетому такие катоды можно применять в аппаратах небольших объёмов.  [c.78]

Интенсивность корозии титана в соляной кислоте можно уменьшить добавкой в раствор замедлителей коррозии— окислителей (азотная кислота, хромовая, К2СГ2О7, КМПО4, Н2О2, О2 и др.), а также солей некоторых металлов (меди, железа, платины и др.). При этом потенциа.п новой системы титан— раствор приобретает более положительное значение. В таком окисле, как ТЮг, число дефектов решетки на границе окисел — газ настолько мало, что достаточно незначительного количества кислорода, чтобы их ликвидировать. Вновь появляющиеся в процессе растворения дефекты благодаря присутствию кислорода будут устраняться, т. е. процесс пассивации будет преобладать над процессом растворения титана.  [c.282]

Дрейли и Разер 2, 8] объясняют наблюдаемые факты тем, что выделяющийся на поверхности раздела металл—оксид газообразный водород разрушает защитную оксидную пленку. Если алюминий контактирует с более электроотрицательным металлом либо легирован никелем или железом, то можно предполагать, что ионы Н+ разряжаются на катодных участках, а не на алюминии, и оксидная пленка остается неповрежденной. Однако полезное действие катодных участков можно также объяснить [91 анодной пассивацией или катодной защитой алюминия. Это влияние сходно с действием легирующих добавок платины и палладия (или контакта с ними) на нержавеющую сталь аналогичным образом эти металлы пассивируют также титан в кислотах (см. разд. 5.4).  [c.344]


Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си " или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз 112], причем одинаково эффективно по-  [c.373]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

VII группы в системах появляются интерметаллические соединения (систему титан — хром, в которой существует фаза Лавеса ТЮГа, можно рассматривать как свидетельство известного диагонального смещения переходных металлов первого большого периода периодической системы элементов). При переходе к металлам группы платины можно ожидать, что в этих системах должны существовать первичные растворы и интерметаллические соединения возможного состава TiaMe, TiMe и TiMej.  [c.176]

Таким образом, все металлы VHI группы образуют с титаном фазы на основе эквиатомных соединений с кристаллической структурой типа s l. Эта структура в системах с железом, рутением, осмием и кобальтом устойчива вплоть до комнатной температуры во всей области гомогенности этих фаз. В системах с родием и иридием существует узкий интервал ее устойчивого состояния при сравнительно низких температурах за счет стабилизации избыточным, по сравнению с эквиатомным составом, содержанием титана. В сплавах близких к эквиатомному, а в системах с никелем, палладием и платиной — во всей области гомогенности — с понижением температуры  [c.187]

Методами металлографического, рентгенографического и дифференциального термического анализов изучено строение сплавов титана с металлами группы платины. На основании полученных экспериментальных данных построены диаграммы состояния системы титан — рутений, титан — осмий, титан — родий, титан — иридий и титан — палладий. Обсуждены особенности строения диаграмм состояния двойных систем титана с металлами VIII группы в зависимости от их положения в периодической системе элементов. Рис. 6, библиогр. 32.  [c.231]

I класс — металлы относительно высокой стоимости серебро, титан, никелемолибденовые сплавы, никелемолибденохромистые сплавы, золото, платина, тантал и цирконий и их сплавы.  [c.205]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]


Смотреть страницы где упоминается термин Платина-титан : [c.66]    [c.175]    [c.346]    [c.73]    [c.52]    [c.151]    [c.294]    [c.77]    [c.78]    [c.187]    [c.189]    [c.57]    [c.70]    [c.79]    [c.223]    [c.224]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Платина-титан



ПОИСК



Платина

Платинит

Титан

Титанит

Титания

Ш т е п а Т. Д. Исследование взаимодействия титана с металлами группы платины

Электролитическое осаждение платины и палладия на титан



© 2025 Mash-xxl.info Реклама на сайте