Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тип и мощность энергетической установки (электростанции)

Тип и параметры принципиальной тепловой схемы, характеризующей тепловой цикл работы электростанции, непосредственно определяют ее тепловую экономичность и в значительной степени надежность работы. Поэтому разработка принципиальной тепловой схемы новой установки является весьма ответственной задачей и требует решения ряда существенных вопросов. Разработка принципиальной тепловой схемы заключается в выборе типа и мощности энергетической установки (электростанции) и отдельных ее элементов в составлении схемы, т. е. в объединении отдельных ее элементов в единую установку, обеспечивающую надежный заданный отпуск энергии и экономично работающую в расчетах, служащих для определения потоков пара и воды и показателей тепловой экономичности.  [c.182]


I. ТИП и мощность ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ (ЭЛЕКТРОСТАНЦИИ)  [c.182]

Оптимальный режим. Оптимальный режим работы ядерной энергетической установки зависит от конкретных условий ее использования, а также от экономических факторов. В отличие от тепловых электростанций топливная составляющая стоимости вырабатываемой электроэнергии на атомных электростанциях значительно меньше остальных составляющих (в частности, существенно меньше капитальные затраты на единицу установленной мощности). Поэтому атомная электростанция будет наиболее экономичной в том случае, если ее мощность будет максимальной, так как при этом капитальные затраты на единицу установленной мощности будут наименьшими, а стоимость вырабатываемой электроэнергии минимальной. Для других ядерных энергетических установок требование максимальной мощности имеет еще большее значение. Таким образом, можно считать, что оптимальные условия работы ядерной энергетической установки характеризуются наибольшим значением отношения полезной работы, производимой ядерной энергетической установкой, к капитальным затратам, т. е. максимальной мощностью установки.  [c.592]

Десятилетия двадцатого века внесли существенные коррективы. Появившаяся паровая турбина сменила паровую машину на мощных тепловых электростанциях, оставив ей лишь право рабо-тать на локомобилях — передвижных энергетических установках небольшой мощности. Такая замена произошла и на судах. Почти одновременно пошли в наступление и двигатели внутреннего сгорания. Сегодня пароход редко уже можно встретить не только в океанском порту, но и у речной пристани.  [c.91]

Важнейшей характеристикой энергетической установки являются ее габариты, которые в основном определяются удельной нагрузкой торцевой площади выхлопа турбин. В ПГТУ удельная нагрузка выхлопа турбины в 10 раз больше, чем в ПТУ (рис. 47). Следовательно, ПГТУ по выхлопу турбины не имеют ограничений в увеличении агрегатной мощности по крайней мере до нескольких тысяч мегаватт, тогда как в ПТУ такое ограничение есть. Одна из существенных достоинств, рассматриваемых электростанций с ПГТУ состоит в том, что их применение резко сокращает объем строительных и монтажных работ при сооружении станции. В электростанции с ПГТУ отсутствуют металлоемкий парогенератор, системы химической водоочистки и технического водоснабжения, градирни производство электроэнергии осуществляется на легком газотурбинном оборудовании (удельный вес турбомашин 0,7 кг/кВт [20]). Это приводит не только к значительному сокращению объема строительно-монтажных работ, но и к ускорению пуска станции.  [c.92]


Развитие народного хозяйства страны в послевоенный период и связанное с этим увеличение потребления электрической и тепловой энергии вызвали значительный рост установленной электрической мощности и в первую очередь мощности тепловых электростанций, строительство которых дешевле и осуществляется в более короткие сроки по сравнению с другими энергетическими установками.  [c.13]

Количество турбогенераторов и их тип определяются не только тепловыми потребителями. Часто ставят конденсационные агрегаты для обеспечения надежного энергоснабжения электрических потребителей. Резервирование энергоснабжения требуется как по условиям большого экономического ущерба при прекращении энергоснабжения даже в течение нескольких часов (сопоставимого со стоимостью самой энергетической установки), так и по условиям техники безопасности. В горнодобывающей, химической, металлургической и ряде других отраслей промышленности прекращение питания электроэнергией приводит к опасным авариям и ставит под угрозу безопасность работающих, что совершенно недопустимо. Поэтому на изолированной станции выбирают большее количество турбогенераторов (не менее трех) и часто устанавливают резервный турбогенератор, а иногда резервный дизель-генератор при сравнительно небольшой мощности резервного агрегата (1—3 МВт). На изолированной электростанции резервный дизель-генератор служит для запуска механизмов собственных нужд при пуске станции из холодного состояния.  [c.220]

Котлоагрегаты могут быть классифицированы по производительности и давлению получаемого пара. Так, в энергетических котельных используются паровые котлы производительностью от 100 т пара в 1 ч и выше. К котельным средней мощности относятся установки с котлами паропро-изводительностью 20.. . 100 т/ч, к котельным малой мощности — до 20 т/ч. В зависимости от давления получаемого пара различают котлоагрегаты низкого — до 1,3 МПа (13 кгс/см ), среднего 1,3.. . 3,9 МПа (13.. . 39 кгс/см ) и высокого — до 10 МПа (100 кгс/см ) давления. Для электростанций строят котлы сверхвысокого давления 17.. . 22 МПа (170.. . 220 кгс/см2).  [c.6]

Поэтому паровая турбина сохранилась до настоящего времени в стационарных энергетических установках большой мощности (тепловые электростанции, пароходы).  [c.378]

Этот проект был существенно изменен в 1988 году, когда в экспедиционном комплексе в качестве энергетической установки вместо ядерного реактора предложили экологически чистую систему с использованием пленочных солнечных батарей на линейных разворачиваемых фермах, отработанных на станциях Салют-7 и Мир . Большое влияние на это решение оказал прогресс в создании пленочных фотопреобразователей энергии, что позволяло значительно упростить конструкцию солнечной электростанции большой мощности.  [c.790]

В Институте высоких температур АН СССР созданы две опытные МГД-установ-ки УО-2 проектной мощностью 200 кВт и У-25 проектной мощностью 20,4 МВт. Последняя установка в течение 250 ч развивала мощность 10 МВт. В настоящее время в Рязани начато сооружение энергетического МГД блока мощностью 500 МВт. Основные трудности, стоящие на пути создания МГД-электростанций, заключаются в необходимости подогрева окислителя (обогащенного кислородом воздуха) до высокой (2200 К) температуры, а также в необходимости иметь весьма жаропрочные. работающие при высоких температурах электроды, обладающие в то же время хорошей электропроводностью. Большие трудности связаны также с решением вопроса улавливания ионизирующих присадок.  [c.214]

Наряду с постоянно поддерживаемыми и развиваемыми научными контактами последовательно расширяется международное сотрудничество СССР в различных областях атомной техники. С 1955 г., выполняя двусторонние правительственные соглашения, заключенные с социалистическими странами, с Францией, Великобританией, Италией, США, Индией, Индонезией, Афганистаном, Ираком, Объединенной Арабской Республикой и другими государствами. Советский Союз участвует в обмене информационными, консультативными и проектными материалами по проблемам народнохозяйственного использования атомной энергии. В соответствии с этими соглашениями советские промышленные предприятия поставляют многим зарубежным странам исследовательские ядерные реакторы и ускорители элементарных частиц, облучающие установки и радиоактивные изотопы — источники ядерных излучений. Советские специалисты участвуют в монтаже и наладке поставляемого оборудования. В советских высших учебных заведениях ведется подготовка национальных кадров инженеров-физиков широкого профиля для ряда государств. При непосредственной помощи СССР построены научно-исследовательские атомные центры в Болгарии, Румынии, Венгрии, Чехословакии, Польше, ГДР, КНР, КНДР, Югославии и Объединенной Арабской Республике. С участием СССР в 1966 г. завершено строительство и ввод в строй действующих энергетических предприятий ГДР атомной электростанции электрической мощностью 70 тыс. кет. При техническом содействии СССР осуществляется строительство первой атомной электростанции электрической мощностью 150 тыс. кет в Чехословакии. Заключены соглашения по сооружению аналогичных атомных электростанций в других странах (Болгарии, Венгрии и др.).  [c.194]


Федеральные ассигнования на нужды солнечной энергетики были, в сущности, ничтожными, пока энергетический кризис 1973— 1974 гг. отчетливо не продемонстрировал уязвимость энергетического хозяйства США. С тех пор размеры ассигнований на развитие солнечной энергетики значительно возросли (рис. 6.22), и уже имеются признаки того, что администрация президента Рейгана будет уделять гораздо меньше внимания этому вопросу. За последние 5—6 лет большая часть средств (60—70 %) была направлена на создание целого ряда систем, известных под названием солнечных электростанций башенного типа. Экспериментальная установка мощностью  [c.144]

За последние годы накоплен большой опыт в проектировании, строительстве и монтаже крупных тепловых электростанций, энергетических блоков мощностью от 150 до 800 МВт, построено 50 тепловых электростанций мощностью от 1 до 3,6 млн. кВт. Переход к установке крупных энергоблоков в сочетании с типизацией проектов, оборудования и конструкционных элементов резко сократил объем строительно-монтажных работ на 1 кВт установленной мощности.  [c.106]

Невиданными темпами развивается атомная энергетика. Всего через 20 лет — совсем небольшой срок — мощность только одного энергетического блока Ленинградской атомной электростанции в 200 раз превысила мощность электростанции в Обнинске. Такая установка мощностью в миллион киловатт стала серийной для мно-  [c.210]

Пиковые и полупиковые электростанции. В отдельных объединенных энергосистемах — Северо-Запада, Юга и Центра с наиболее неравномерными графиками нагрузок — требуется для обеспечения пиковых нагрузок применять энергетическое оборудование, обеспечивающее быстрый набор нагрузки и достаточно экономичную кратковременную работу в часы прохождения утренних и вечерних максимальных нагрузок. К таким мобильным установкам помимо гидравлических и гидроаккумулирующих электростанций, как известно, относятся газотурбинные установки, работающие па газе или специальном жидком топливе, и парогазовые установки. К концу 1980 г. в работе находилось пять газотурбинных установок (ГТУ) мощностью по 100 МВт каждая и две парогазовые установки (ПГУ), из которых одна работает по схеме сброса отработанных газов от ГТУ мощностью по 40 МВт в топку котла энергоблока мощностью 210 МВт.  [c.133]

Наращивание энергетических мощностей в крупных энергосистемах Советского Союза осуществляется, как правило, путем строительства электростанций большой мощности по нескольку миллионов киловатт и путем расширения действующих электростанций с установкой турбогенераторов мощностью 100, 1.50, 200, 300, 500, 800 и 1 200 тыс. кет.  [c.3]

До настоящего времени основная часть (до 80%) электрической энергии вырабатывается на тепловых и атомных электростанциях. Ведущая роль этих электростанций сохранится и в будущем . Источниками тепловой энергии на таких электростанциях служат главным образом природное химическое топливо (уголь, нефть, газ) и ядерное горючее. В качестве энергетических установок на тепловых (и атомных) электростанциях служат паротурбинные установки (ПТУ). Широкое применение ПТУ в энергетике связано с их надежностью, большим ресурсом работы и отсутствием компрессора для сжатия рабочего тела — водяного пара до высоких давлений. Однако экономичность ПТУ ограничена. Даже при сверхкритических тепловых параметрах водяного пара эффективный к.п.д. ПТУ едва достигает 40%. К недостаткам ПТУ относятся также большой удельный расход тепла (около 2000 ккал/кВт-ч) на производство электроэнергии, большие габариты, значительный удельный вес (10 кг/кВт), невысокая надежность поверхностей нагрева парогенераторов, большие удельные объемы водяного пара в последних ступенях турбины, ограничивающие единичную мощность машины, большое время запуска (несколько суток), большие потери циркуляционной воды (до 3,6 кг/кВт-ч) в градирнях и др. Кроме того, мощные энергетические ПТУ, работающие на природном химическом топливе (уголь, мазут), являются крупными источниками вредных выбросов (пылевидные частицы, окислы азота, сернистые соединения) в атмосферу и тепловых выбросов в водоемы.  [c.4]

Среди тепловых электростанций и энергетических силовых установок отдельных предприятий большое значение имеют установки малой и средней мощности десятки тысяч таких установок работают на всей территории Советского Союза.  [c.3]

Газотурбинные электростанции в СССР в качестве самостоятельных энергетических установок получили ограниченное распространение. Серийные газотурбинные установки (ГТУ) обладают невысокой экономичностью, потребляют, как правило, высококачественное топливо (жидкое или газообразное). При малых капитальных затратах на сооружение они характеризуются высокой маневренностью, поэтому в некоторых странах, например в США, их используют в качестве пиковых энергоустановок. ГТУ имеют по сравнению с паровыми турбинами повышенные шумовые характеристики, требующие дополнительной звукоизоляции машинного отделения и воздухозаборных устройств. Воздушный компрессор потребляет значительную долю (50—60%) внутренней мощности газовой турбины. Вслед-  [c.293]

В целях контроля и поддержания на заданном техническом уровне параметров ГТУ проводится ее техническое обслуживание. В зависимости от мощности и комплектации поставки энергетической ГТУ — блочная, в контейнере или поузловая с последующей сборкой на электростанции — составляется инструкция по техническому обслуживанию установки. В целом техническое обслуживание можно условно разделить по срокам на ежедневное (включает в себя обслуживание через каждый час с записью в журнале), еженедельное, ежемесячное, полугодовое, ежегодное (сезонное).  [c.161]


До конца пятилетки намечено ввести на ТЭС первый энергетический блок мощностью 1200 МВт. Энергоблок такой единичной мощностью имеет значительные экономические преимущества по сравнению с энергоблоками 300 МВт снижение удельного расхода топлива на 4%, численности обслуживающего персонала на 50% и металлоемкости на 30%. Блочные установки единичной мощностью 500—800 МВт займут доминирующее положение во вводе новых мощностей на конденсационных электростанциях. В 1975 г. введенная мощность энергоблоков 500—800 МВт составляла в общей мощности тепловых электростанций 29,4%, а к 1980 г. удельный вес указанных гэнергоблоков возрастет до 48%. На ТЭЦ, снабжающих тепловой энергией крупные города, будут устанавливаться теплофикационные энергоблоки на сверхкритические параметры пара мощностью 250/300 МВт.  [c.278]

В каждом отдельном случае необходимо делать сравнительные технико-экономические расчеты для различных типов энергетических установок. Характерным примером обоснованного выбора типа энергетической установки для покрытия пиковых нагрузок является выбор агрегатов для газотурбинной электростанции близ Бэр-Поинт на о. Ванкувер в Британской Колумбии. Изучение нагрузок гидроэнергосистемы Британской Колумбии показало, что необходимая мощность пиковых станций была равна 20 000—40 000 кет к концу лета 1957 г. и около 80 000 кет к концу 1957 г. Коэффициент нагрузки для новой станции при работе ее на номинальной нагрузке будет около 25%. Были произведены сравнения трех типов установок паротурбинной, газотурбинной и дизельной. Поскольку расход топлива не играет решающей роли для пиковой станции, то паровая турбина была признана непригодной для такого графика нагрузки. Поэтому основное сравнение производилось для дизельных установок и газотурбинных без регенерации и с регенерацией. Для сравнительных расчетов были приняты следующие показатели установок (табл. 1-1).  [c.8]

Современное развитие транспортной техники связано со значительным увеличением скорости, силы тяги и необходимостью применения очень мощных, но легких и компактных силовых установок с высокими к.п.д. и надежностью работы. Уже нередко мощности двигателей транспортных установок соответствуют мощности небольших электростанций. Например, мощность энергетических установок некоторых судов в настоящее время составляет 30 тыс. кВт, а в ближайшем будущем она может достигнуть 100 тыс. и даже больше. Тенденция увеличения мощности силовых установок транспорта, особенно морского флота, сохранится и в будущем. При таких огромных мощностях обычные дизельные и паротурбинные двигатели уже не могут отвечать принципиально новым требованиям, предъявляемым к современным транспортным энергетическим установкам. На смену им и должны нрийти более экономичные, более легкие, компактные и простые, более надежные парогазотурбинные двигатели.  [c.96]

В судостроении дизели применяются как в качестве главных двигателей, так и вспомогательных. Кроме того, дизели используются как стационарные двигатели на маломощных электростанциях, в передвижных энергокомнрессорных установках, в энергетических установках для привода сельскохозяйственных мап1ин и т. п. Переход на тепловозную тягу железнодорожного транспорта обусловил быстрый рост производства тепловозных дизелей. Их мощность в настоящее время достигла 4000 л. с. в агрегате. Широкое распространение дизели получили на мотовозах, автомотрисах и т. п. Дизели устанавливают на автомобилях  [c.205]

Экономические показатели. Сравнивать непосредственно стоимость производства электроэнергии на несуществующем реакторе ИТС с реально действующими энергетическими установками не вполне корректно. Оценки показывают, что капитальные затраты на единицу установленной мощности для установок деления почти вдвое меньше, чем для установок синтеза [6]. Значительная доля в капитальных затратах относится к устройствам, осуществляющим поджиг мишени (лазеры, ускорители). Она может быть снижена, если будут найдены способы улучшения энергетических характеристик мишени. В стоимости электроэнергии электростанций ИТС отсутствуют затраты на долгосрочное хранение отходов. Экономический анализ, проведенный различными исследовательскими группами, показывает, что себестоимость электроэнергии, произведенной с помощью ИТС, становится конкурентоспособной, когда один драйвер с частотой 10 Гц работает на 5 реакторов с тепловой мощностью каждого реактора 1 ГВт [3]. При этом себестоимость 1 кВтч электроэнергии по прогнозам сопоставима с показателями для МТС и ТЭС [4], но, однако, превосходит их. В этом случае темп развития исследований в области ядерного синтеза может  [c.167]

Строите.льство электростанций с агрегатами большой мощности вызывало необходимость соединения их с мощными энергетическими системами, так как установка крупного агрегата в маломощной системе требует создания относительно большого резерва. В этот период мощность и количество энергетических систем непрерывно возрастали. Так, например, если в 1928 г. было всего 5 энергосистем, то к 1937 г. их стало 28.  [c.20]

Водоизмещение ледокола равно 16 000 ш, полная длина составляет 194 л, наибольшая ширина принята равной 27,6 лг, осадка — 9,2 м. Его корпус с массивными литыми форштевнем и ахтерштевнем имеет усиленную обшивку из высококачественной стали, толщина которой в носовой и кормовой частях достигает 50 мм, и разделен на отсеки одиннадцатью поперечными водонепроницаемыми переборками. Три энергетических водо-водяных реактора его двухконтурной силовой установки суммарной тепловой мощностью 270 тыс. кет и оборудование первичного контура циркуляции помещены в средней части судна в специальном отсеке с надежной противорадиационной защитой. По сторонам реакторного отсека расположены носовое и кормовое турбогенераторные отделения, с распределительных щитов которых электроэнергия подается к среднему и двум бортовым двигателям, приводящим во вращение валы гребных винтов. Рядом с этими отделениями главных генераторов находятся две электростанции, вырабатывающие ток для питания двигателей вспомогательного судового оборудования. Контроль за действием реакторной установки ледокола и регулирование ее действия производятся с пульта дистанционного управления, изменение режима работы двигателей гребных винтов осуществляется непосредственно с ходового мостика судна. Для выполнения специальных ледовых маневров в корпусе ледокола — в носовой и кормовой частях и вдоль бортов — размещены водяные цистерны. При форсировании тяжелых ледяных полей, когда собственный вес ледокола оказывается недостаточным для взламывания льда, в носовые цистерны подается забортная вода, увеличивая давление корпуса на лед. При отходе ледокола от ледяной кромки вода может быть подана в кормовые цистерны, увеличивая осадку на корму. Для случаев, когда корпус ледокола испытывает сжимающее действие льда, попеременной подачей воды в бортовые цистерны может осуществляться раскачивание корпуса ледокола относительно продольной оси. В кормовой части шлюпочной палубы ледокола находится взлетно-посадочная площадка для вертолета ледовой разведки. Для выполненения погрузочно-разгрузочных работ на палубе уста новлены электрические подъемные краны.  [c.297]

В связи с этим повышение маневренных возможностей энергосистем должно осуществляться в следующих направлениях продолжение привлечения энергетических блоков мощностью 150, 200, 300 МВт к работе в переменной части графика нагрузки с проведением дальнейших работ по увеличению их маневренных характеристик сооружение специальных маневренных электростанций, прежде всего газотурбинных установок и ГАЭС в энергосистемах Северо-Запада, Центра и Юга продолжение строительства ГЭС для покрытия пиковой и частично полупиковой зон графика нагрузки в остальных энергосистемах еероиейской части страны, проведение работ по использованию ТЭЦ для регулирования полупиковой зоны графиков нагрузки за счет остано ва теплофикационных агрегатов в ночные часы суток с учетом установки дополнительных РОУ и бойлеров продолжение работ по определению технических экономических возможностей привлечения АЭС к регулированию  [c.207]


По всем этим причинам Директивы XXIII съезда КПСС по новому пятилетнему плану развития народного хозяйства СССР предусматривают на вновь строящихся тепловых электростанциях установку преимущественно энергетических блоков единичной мощностью 300 тысяч киловатт.  [c.48]

Разведочные работы. Происхождение угля значительно проще и известно гораздо лучше, чем нефти, но все-таки недостаточно точно. Более точные прогнозы необходимы для оптимального использования и удовлетворения запросов потребителей. Качественные характеристики углей приобретают особую важность по мере роста требований к их эффективности и чистоте со стороны потребителей. С одной стороны, делаются попытки использовать низкосортный уголь в усовершенствованных котельных установках или путем смешивания различных углей для создания заменителей высококачественных коксующихся углей. С другой стороны, налицо стремление, особенно в электроэнергетике США, гарантировать любой тепловой электростанции запасы угля заданного качества на весь срок ее эксплуатации практически это требует вовлечения колоссальных резервов угля — порядка 200 млн. т на 40 лет работы станции мощностью 1 млн. кВт. За последние 50 лет обновились методы классификации углей — химические, физические и петрографические, накоплены большие объемы информации, однако зачастую они малодоступны или не удовлетворяют современным требованиям. В настоящее время Геологическая служба США пытается компьютеризовать весь доступный объем информации другие организации — от Института электроэнергетики в Пало Альто (Калифорния) до Международного энергетического агентства в Париже и Лондоне — составляют детальное описание извлекаемых углей с учетом их количества и качества.  [c.73]

Одним из факторов, определяющих надежную работу проектируемого реактора, является умение достаточно точно рассчитывать температурные поля оболочек и топлива ТВЭЛОВ. Излагаемая ниже методика теплогидравлического расчета пакета тепловыделяющих элементов разработана для реакторов атомной электростанции (БРГД) мош,ностью 1000—1500 Мвт (эл.), а также для реактора опытно-промышленной установки (БРИГ), предназначенной для отработки основных технологических и конструкторских вопросов создания энергетических быстрых реакторов большой мощности на диссоциирующем теплоносителе и для проверки условий, обеспечивающих максимально возможную наработку вторичного ядерного горючего при минимальных временах удвоения. Рассматриваемая методика расчета может быть использована только для твэлов стержневого типа. Пакет тепловыделяющих элементов представляет собой шестигранную трубу, заключающую в себе пучок тепловыделяющих элементов, расположенных по треугольной решетке. Для проведения теплогидравлических расчетов пакетов твэлов необходимо предварительно определить следующие характеристики пакета [3.1].  [c.68]

Открытие и разработка нефтяных месторождений в Сибири и Казахстане вызовут потребность в подобных установках. Схема такой установки производительностью до 100 т парогаза в 1 ч с газовой турбиной мощностью N3 = 10 000 кет разработана В. А. Ведяевым, М. М. Ней-дингом и И. А. Сандомирским на кафедре тепловых электростанций Московского энергетического института.  [c.303]

По шестому пятилетнему плану развития народного хозяйства СССР на 1956—1960 гг. определены не только количественные изменения в энергетике страны (рост выработки электрической энергии, увеличение установленной мощности электростанций и развитие электросетей), но и сформулированы основные направления технического прогресса энергетики СССР в шестом пятилетии и необходимые для этого мероприятия укрупнение существующих энергосистем и создание объединенных энергетических систем в Европейской части СССР, Центральной Сибири и Закавказье сооружение тепловых электростанций (мощностью до 1 200 ООО кет) в крупных энергосистемах в районах добычи топлива с установкой агрегатов по 100, 150 и 200 мгвт с блочной схемой коммутации котел—турбина-повышение экономичности тепловых станций путем широкого применения турбин с повышенными параметрами пара (130 ата и 565° С  [c.5]

В 1952 г. фирма выпустила первую энергетическую газотурбинную установку мощностью 15 000 кет, которая была установлена на электростанции в Стредфорде близ Манчестера. В 1955 г. фирма изготовила две установки типа L. 21 одну для Венесуэлы на нефтепромыслы о. Маракайбо и другую для аварийной выработки электроэнергии на водопроводной станции Ашфорд (Англия). В 1958 г. была выпущена газотурбинная установка типа L. 51, которая работает на электростанции в Бруни (о. Борнео).  [c.35]

Проектными проработками и технико-эко-номическими расчетами, проводившимися ЦКТИ и Промэнергопроектом, было показано, что в ряде случаев экономически выгодным будет использование в ближайшие годы энергетических пиковых ГТУ и с более низкой единичной мощностью, чем ГТ-100-750 ЛМЗ (25 и 50 тыс. кет). Эти ГТУ должны выполняться по простейшей тепловой схеме как одновальная установка с однокорпусным осевым компрессором без регенерации. Широкое применение смогут, по-видимому, найти газовые турбины простейшего типа и в установках меньшей мощности в качестве агрегатов на передвижных электростанциях.  [c.61]

Быстроходные гидромуфты мощностью свыше 1000 кет применяются в энергетической промышленности для привода питательных насосов на тепловых электростанциях, для привода турбовоздуходувок (например, бессемеровских цехов) и других турбомашин. При установке гидромуфт при постоянном числе оборотов двигателя можно по программе регулировать число оборотов турбомашин, а тем самым их производительность и нанор (давление). Такой вид регулирования является очень экономичным, а поэтому получает все большее распространение.  [c.200]

На повестке дня — создание и внедрение высокоманевренного энергетического оборудования, необходимого для покрытия переменной части графика электрической нагрузки. Это газотурбинные и парогазовые установки, а также специальные паротурбинные энергоблоки мощностью 500 МВт. Уже длительное время работают газотурбинные установки мощностью 100 МВт на Краснодарской ТЭЦ, ГРЭС-3 Мосэнерго, парогазовые установки мощностью 200 МВт на Невинномысской ГРЭС и мощностью 250 МВт на Молдавской ГРЭС. Ведутся научно-исследовательские и проектные проработки по созданию газотурбинных установок мощностью 150 МВт, воздушно-акку-мулирующих. электростанций, парогазовых установок мощностью до 800 МВт. Ведется  [c.47]

При неблочной структуре электростанции производительность питательной установки регулируется прежде всего числом работающих насосов. Для снижения расхода воды, подаваемой электропитательным насосом, при частичных нагрузках применяют гидромуфты. Они позволяют осуществить бесступенчатое изменение частоты вращения насоса при неизменной частоте вращения приводного электродвигателя с относительно небольшой энергетической потерей. На ТЭС и АЭС применяют гидромуфты типов МГ-2-650, ЛМЗ-8000 и др. с номинальной передаваемой мощностью 7—8 МВт и автоматической глубиной регулирования по скольжению 3—20%. В качестве рабочей жидкости они используют турбинное масло Т-22 (расход масла 70 м ч).  [c.129]


Смотреть страницы где упоминается термин Тип и мощность энергетической установки (электростанции) : [c.182]    [c.9]    [c.230]    [c.44]    [c.148]    [c.104]    [c.265]    [c.13]    [c.46]    [c.294]   
Смотреть главы в:

Тепловые электрические станции  -> Тип и мощность энергетической установки (электростанции)



ПОИСК



Мощность электростанции

Мощность энергетических установок

Установка энергетическая

Электростанции



© 2025 Mash-xxl.info Реклама на сайте