Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесное состояние жидкости и действующие силы

Равновесное состояние жидкости и действующие силы  [c.28]

Ламинарное течение жидкой пленки может сопровождаться волновым движением. Частицы жидкости, находящиеся на поверхности пленки, под действием случайных возмущений могут получить смещение, приводящее к деформации поверхности и отклонению ее от равновесного состояния. При этом возникают силы, стремящиеся вернуть поверхность жидкости к равновесной форме. При стекании пленок большое значение имеет сила, обусловленная поверхностным натяжением жидкости. Под действием восстанавливающих сил жидкие частицы стремятся вернуться к положению равновесия. Однако по инерции они будут проходить положение равновесия, в новь испытывать действие восстановительных сил и т. д. В результате на поверхности пленки, подвергшейся случайному возмущению, будут возникать капиллярные волны.  [c.262]


Таким образом, под действием сил поверхностного натяжения, стремящегося сделать поверхность минимальной и энергии теплового движения, обусловливающего отклонение от этого равновесного состояния, возникают мелкие неоднородности на поверхности жидкости. Эти неоднородности на поверхности представляют собой молекулярные шероховатости поверхности, нарушающие правильное зеркальное отражение, тем самым приводящие к рассеянию света на поверхности. Если соприкосновение двух несмешивающихся жидкостей приводит к уменьшению поверхностного натяжения на границе их раздела, то из-за уменьшения противодействия (поверхностного натяжения) флуктуации поверхности должны усиливаться тем самым должна увеличиваться интенсивность рассеянного света. Опыты, проведенные Мандельштамом на смеси из метилового спирта  [c.321]

При анализе процесса дросселирования допустимо считать, что внутри дроссельной пробки устанавливается, как и вообще при течении газа (жидкости), локальное термодинамическое равновесие, т. е. протекающий через пробку газ (жидкость) находится в равновесном состоянии при этом процесс изменения состояния газа (жидкости) в дроссельной пробке, вследствие конечной скорости протекания действия сил трения, является необратимым.  [c.167]

Рабочее тело (или термодинамическая система), равновесное состояние которого вполне определяется значениями двух независимых переменных-функций состояния (например, р п v, р ц Т, Т и s и т.п.), называется простым телоМ (или простой системой). Примерами простых тел являются газы, пары, жидкости и многие твердые тела при условии, что эти вещества находятся в термодинамическом равновесии и не подвержены действию химических и -фазовых превращений, электромагнитных и гравитационных полей и сил поверхностного натяжения (или подвержены в такой незначительной степени, что влиянием этих факторов можно пренебречь).  [c.12]

В аналогичном направлении, приближающем систему к равновесному состоянию, действует сила тяжести. Под действием этих сил жидкие частицы смещаются и будут стремиться вернуться к равновесному положению. Однако по инерции они будут проходить положение равновесия и вновь испытывать действие восстанавливающих сил и т. д. На поверхности жидкости будут возникать волны. Основное отличие волнового режима течения, наступающего при Ке>30н-50, от ламинарного состоит в том, что при волновом режиме существенную роль в распределении скоростей по толщине пленки играют капиллярные силы, которые возникают при деформации поверхности. Величина их соизмерима с вязкими силами. На возникновение и особенно гашение волн сильное влияние оказывает наличие на поверхности жидкости поверхностно-активных веществ. Наиболее детальные теоретические и экспериментальные исследования волнового движения пленки были проведены П. Л. Капицей, В. Г. Левичем и другими авторами [Л. 73, 104].  [c.285]


Расклинивающее давление тонкого плоскопараллельного слоя жидкости, расположенного между двумя различными или тождественными фазами, равно давлению Р Н), с которым действует в состоянии равновесия слой жидкости на ограничивающие его тела, стремясь раздвинуть их. Чем больше сила прижима двух тел, тем меньше равновесная толщина прослойки жидкости и больше расклинивающее давление. Для адгезии частиц в жидкой среде расклинивающее давление равно силе ( в расчете на единицу площади, обычно на 1 см , или на 1 частицу), с которой тонкий слой жидкости действует в состоянии равновесия на частицы, стремясь раздвинуть их.  [c.119]

При вращении импеллера имеющаяся в рабочем зазоре жидкость находится в равновесном состоянии от действия центробежных сил, развиваемых жидкостью, и разности гидравлического давления по высоте диска.  [c.168]

Мы считали, что объемные силы отсутствуют. Возможно, будет поучительным заметить, что варьированное распределение смещений (или скоростей), которое мы только что рассматривали в равенствах (а), (б) и (в), представляет собой фактически точное решение задачи для упругого (или вязкого) материала, удовлетворяющее системе дифференциальных уравнений, записанных в величинах и, V, ш, и относится соответственно к теории упругости или теории вязкого тела (см. уравнения (25.5) и (26.8) т. 1, стр. 442 и 450 в. последнем случае). Кроме того, возможные распределения, которые отклоняются от строго равновесного, также представляют собой такие точные распределения. (Уравнение (а) выражает фактически скорости течения в слое вязкой среды, движущейся между двумя жесткими параллельными пластинками, когда одна из них перемещается относительно другой со скоростью щ и одновременно под действием градиента давления происходит ламинарное движение жидкости вперед, вдоль оси х на рис. 3.2). В случае, описываемом уравнением (а), легко установить, что корректные значения напряжений, отвечающие использованным варьированным состояниям упругой (вязкой) среды, даются более сложным распределением напряжений, которое, помимо измененных значений Хху, включает также нормальные напряжения а и (Ту. Это приводит, таким образом, к увеличению энергии в измененной системе, характеризуемой величинами и, о, ш. Отсюда следует правдоподобный вывод, что при добавлении новых ограничений энергия варьированных состояний увеличивается.  [c.159]

Количественный показатель такого напряжения может быть выражен различными способами. Чаще всего для этого используется поверхностное натяжение 0, которое определяется как сила, действующая в плоскости поверхности, в расчете на единицу длины. Согласно этому определению, можно представить обратимый изотермический процесс, при котором площадь поверхности А жидкости увеличивается вследствие ее растяжения и создаются условия для перехода молекул из объема жидкости в пограничный слой. Дифференциальная обратимая работа будет равна а/с1А в этом случае а — поверхностная энергия Гиббса в расчете на единицу площади поверхности. Поскольку равновесные системы стремятся обладать минимумом свободной энергии (при постоянных температуре и давлении), произведение аЛ также стремится к минимуму. При фиксированном значении о равновесным является состояние, при котором площадь поверхности жидкости минимальна в соответствии с ограничениями системы.  [c.513]

Равновесное состояние. Есл i на некоторую массу жидкости не действовали и не действуют внешние силы, то каждая частица этой массы или остается неподвижной относительно данной системы координат, или движется прямолинейно с одинаковой для всех частиц скоростью, та1- что взаимное расположение частиц этой массы жидкости остгется неизменным. Такое механическое состояние массы жидкости называется равновесным.  [c.28]

Архимедова сила приложена в центре тяжести погруженного объема тела (см. точку С на рис. 23), называемом центром водоизмещения. 1<роме этой силы, на тело действует и сила тяжести самого тела Рв, направленная вниз. Очевидно, тело будет плавать в равновесном состоянии при условии Рарх Ро, погружаться в жидкость при арх< е и всплывать при Рарх>Ро- Закон Архимеда широко используется в технике, например в кораблестроении, при расчетах устройств для измерения и регулирования уровня жидкости в резервуарах, карбюраторах двигателей внутреннего сгорания, расходомерах и т. д.  [c.45]


К К. я., изучаемым теорией капиллярности, относятся 1) Равновесные К. я. — явления собственной формы жидкостей и равновесной формы роста твердых тел — кристаллов сюда относятся образование равновесных форм свободной поверхности жидкостей. поверхностей, ограниченных твердыми телами (формы пленок, фигуры Плато), под действием одних только молекулярных сил, а также внешнего (обычно гравитационного) поля, и формы движущихся поверхностей (движущиеся — колеблющиеся капли, струи, капиллярные волны). К равновесным К. я. принадлежат также и явления при соприкосновении жидких поверхностей с твердыми телами и другими несмешивающимися жидкостями — явления смачивания. 2) К а-пиллярные силы — силы, обусловленные молекулярным давлением и его зависимостью от кривизны поверхности. 3) Капиллярные движения, т. е. движения, вызываемые капиллярными силами и ведущие к образованию равновесных форм и вообще к равновесным поверхностным состояниям.  [c.474]

Основными примерами диспергирующих волн в гл. 3 и 4 являются гравитационные волны, движение которых определяется взаимодействием между инерцией жидкости и ее стремлением вернуться под действием силы тяжести в состояние устойчивого равновесия в случае, когда более тяжелая жидкость располагается ниже более легкой. В гл. 4 рассматриваются волны такого типа внутри жидкости, плотность которой в невозмущенном равновесном состоянии непрерывно уменьшается с увеличением высоты это так называемые внутренние гравитационные волны. Метеорологами установлено, что стратификация плотности внутри различных частей атмосферы такова, что появляются внутренние гравитационные волны, существенно влияющие на некоторые наблюдаемые процессы. Океанографы в свою очередь показали, что в частях океана с существенной стратификацией плотности внутренние гравитацонные волны имеют важное значение. Поскольку сила тяжести, как возвращающая сила, действует в одном фиксированном направлении, нет оснований для изотропии (т. е. равноправия всех направлений ) при распространении гравитационных волн, и было найдено, что внутренние гравитационные волны являются заметно анизотропными.  [c.255]


Смотреть страницы где упоминается термин Равновесное состояние жидкости и действующие силы : [c.57]    [c.46]    [c.277]    [c.19]    [c.191]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Равновесное состояние жидкости и действующие силы



ПОИСК



ДЕЙСТВУЮЩИЕ В ЖИДКОСТЯХ

О силах, действующих в жидкости

Силы в жидкости

Состояние равновесное



© 2025 Mash-xxl.info Реклама на сайте