Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическая энергия и главный момент количеств движения

Кинетическая энергия и главный момент количеств движения  [c.296]

Подстановка главного вектора количеств движения О (1.93) и кинетического момента (1.94), выраженных с помощью кинетической энергии, в равенства (1.85) и (1.86) приводит к уравнениям Эйлера — Лагранжа дня твердою тела  [c.41]

Ес.яи по существу поставленной задачи необходимо изучить движение каждой точки системы в отдельности, то полное интегрирование уравнений движения системы точек, приводящее к определению координат точек системы в зависимости от времени, неизбежно. Таковы, например, задачи о движении двух, трех или нескольких тяготеющих друг к другу тел в небесной механике. В других случаях оказывается достаточным определить изменение некоторых суммарных мер движения системы в целом (количества движения, момента количества движения, кинетической энергии) в зависимости от суммарных мер действия сил (главный вектор и главный момент приложенных сил, работа сил, потенциальная энергия).  [c.104]


В работе 1946 г. Космодемьянский выводит основные теоремы о движе- 241 НИИ центра масс системы, об изменении главного вектора количества движения, кинетического момента и кинетической энергии тела переменной массы. Однако уравнения движения тела переменной массы, выведенные этим путем, не описывали движения таких объектов, где необходимо было учитывать внутреннее относительное движение частиц, реактивное действие которых исключалось гипотезой удара или мгновенного контакта.  [c.241]

Приведем основные теоремы об изменении для динамического описания точки переменной массы в традиционном изложении, опираясь при этом, главным образом, на работу [177]. Говоря о теоремах изменения, следуя традиции, будем иметь в виду важнейшие теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии точки переменной массы, поскольку именно в этих теоремах сконцентрированы характерные свойства движения и законы сохранения кинетических величин.  [c.66]

Т. е. 1) дифференциал кинетической энергии материальной системы на бесконечно малом ее перемеи ении равен алгебраической сумме элементарных работ всех сил на соответствующих перемещениях их точек приложения 2) приращение кинетической энергии материальной системы на конечном ее перемещении равно алгебраической сумме полных работ всех сил на соответствующих перемещениях их точек приложения. Слова всех сил означают в обоих случаях всех заданных сил и реакций связей или всех внешних и внутренних сил. В законах количеств движения и кинетических моментов внутренние силы не фигурировали, ибо их главный вектор и главный векторный момент относительно любого центра равны нулю но алгебраическая сумма работ внутренних сил в общем случае материальной системы не равна нулю, как показано в п. 5° 2 она равна нулю в частном случае абсолютно твердого тела, но уже для упругого тела не равна нулю ).  [c.206]

Закон количеств движения дает одно векторное уравнение, т. е. три скалярных уравнения столько же дает закон кинетических моментов наконец, закон изменения кинетической энергии дает одно скалярное уравнение. Таким образом, все три основных закона позволяют написать в общей сложности семь дифференциальных уравнений. Этих семи уравнений в общем случае может оказаться недостаточно для нахождения движения каждой точки материальной системы кроме того — и это главное — в эти семь уравнений могут входить и реакции связей например, в законах количеств движения и кинетических моментов автоматически исключены внутренние силы, но те реакции связей, которые являются внешними силами, в эти уравнения войдут таким образом, хотя три основных закона динамики имеют определенный физический смысл, тем не менее они не дают возможности решить общую задачу динамики несвободной материальной системы.  [c.308]


Мгновенное вращение с угловой скоростью ш твердого тела будет тогда тождественно с мгновенным вращением триэдра и его составляющие р, q, г по подвижным осям Oxyz определяются вышеприведенными формулами (2). Мы займемся сейчас вычислением кинетической энергии тела и главного момента количества движения различных точек тела относительно неподвижной точки О.  [c.141]

Для составления дифференциальных уравнений движения тела, имеющего неподпижн точку, необходимо найти выражение главного, момента количеств движения Ко (кинетического момента) и кинетической энергии Т тела в этом случае движения.  [c.340]

Движение твердого тела вокруг неподвижной точки и движение свободного твердого тела. Для составления дифференциальных уравнений движения тела, имеющего неподвижную точку, необходимо найги выражения главного момента количеств движения Kq (кинетического момента) и кинетической энергии Т тела в этом случае движения.  [c.407]

Г идравлический двигател ь—машина, преобразующая энергию капельной жидкости (энергию положения, давления, кинетическую) в механическую работу на валу или штоке двигателя. Двигатели, использующие только энергию давления (водостолбовые машины, гидравлические цилиндры) или главным образом энергию положения (виды водяных колёс), имеют несравненно меньшее значение, нежели водяные турбины (гидравлические турбины, гидротурбины), использующие энергию давления и кинетическую. Водяная турбина развивает на своём валу крутящий момент за счёт изменения момента количества движения или, иначе, циркуляции протекающего через её рабочее колесо потока жидкости (почти всегда воды).  [c.253]

В развитии механики тел переменной массы и теория реактивного движения после Великой Отечественной войны можно наметить два этапа. Первый из них — примерно до середины 50-х годов. В этот период основное внимание уделяется движению с отбрасыванием частиц, притом главной целью является уже не столько решение отдельных задач, сколько систематическое построение теории. В значительной мере это было выполнено А. А. Космодемьянским. В его работе Общие теоремы механики тел переменной массы (J946) исходным является уравнение Мещерского, кото])ое удовлетворяется для каждой из точек системы переменной массы. Отсюда получены законы изменения главного вектора количества движения, кинетического момента и кинетической энергии для тела переменной массы.  [c.302]


Смотреть страницы где упоминается термин Кинетическая энергия и главный момент количеств движения : [c.283]    [c.35]    [c.23]    [c.363]    [c.120]    [c.303]    [c.317]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Кинетическая энергия и главный момент количеств движения



ПОИСК



Главный момент количества движения

Движение главное

Кинетическая энергия—см. Энергия

Количество движения

Момент главный

Момент главный (см. Главный момент)

Момент кинетический

Момент кинетический (количества движения)

Момент количеств движения

Момент количества движени

Моменты главные

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)



© 2025 Mash-xxl.info Реклама на сайте