Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Канонические уравнения в неголономной системе координат

Рассмотрим теперь канонические уравнения движения голо-номной системы материальных точек в неголономной системе координат. Как и выше, введем обобщенные импульсы  [c.161]

М. Ф. Шульгин предложил преобразование канонических переменных, выраженных в голономных и неголономных координатах, позволяющие установить соответствие между теоремами аналитической голономной динамики. Он показал также, что метод преобразования уравнений Лагранжа второго рода, установленный Э. Раусом, можно обобщить на неголономные системы с линейными связями.  [c.102]


В. В. Добронравов распространил теорию интегральных инвариантов на неголономные системы референции [12] и нашел, используя теорему Пуанкаре о связи между последним множителем и интегральным инвариантом, последний множитель для канонических уравнений в не-голономных координатах  [c.61]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]


Однако, если для голономных систем теорема Гамильтона — Якоби в неголономных координатах доказывается совершенно гладко, то в применении к системам с неголономными связями встречается затруднение, состоящее в том, что в канонических уравнениях движения в неголономных координатах число членов с коэффициентами Риччи — Гамеля уменьшается. Вследствие такой неполноты доказательство теоремы Гамильтона непосредственно не проходит. Мы попытались обойти данное затруднение, применяя все исследование к системам типа Чаплыгина с циклическими координатами для независимости же результатов от порядка преобразований, о чем говорилось выше, кинетическая энергия пересчитывалась в нормальных координатах. При всех перечисленных условиях теорема Гамильтона — Якоби доказывается. Однако следует помнить, что даже классическая теорема Гамильтона — Якоби в голономных координатах для голономных же систем далеко не всегда приводит к решению задачи о нахождении всех интегралов уравнений движения, в силу затруднительности интегрирования самого уравнения в частных производных Г амильто а — Якоби.  [c.8]


Смотреть страницы где упоминается термин Канонические уравнения в неголономной системе координат : [c.98]    [c.102]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Канонические уравнения в неголономной системе координат



ПОИСК



Вид канонический

Каноническая система уравнений

Канонические координаты

Канонические уравнения уравнения канонические

Координаты неголономные

Координаты системы

Неголономные системы, уравнения

Система каноническая

Системы координат . 4. Уравнения для

Системы координат неголономные

Системы неголономные

Уравнения в координатах

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте