Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шины анодные

Чтобы при относительно высокой плотности защитного тока обеспечить равномерное его распределение и в то же время избежать образования слишком больших анодных воронок напряжения, в данном случае выбрали станцию катодной защиты с наложением тока от постороннего источника и несколькими анодными заземлителями. Протекторная защита здесь нецелесообразна из-за довольно большой величины требуемого защитного тока и также вследствие необходимости иметь запас по защитному току. В качестве источника защитного тока выбрали преобразователь на 10 В, 1 А, который был дополнительно оборудован сборной шиной анодных и катодных кабелей, состоящей из соответствующего числа разделительных клемм. Напряжение на выходе этого преобразователя можно настраивать ступенчато при помощи отводов на обмотке трансформатора. Для контроля величины подводимого защитного тока предусмотрен амперметр.  [c.277]


Катодная шина — анодный стояк 0,003  [c.291]

На рис. 104 показан разрез электролизера с катодами из волокнистого углеродного материала. Аппарат состоит из титанового корпуса 4. в котором поочередно установлено десять катодных S и одиннадцать анодных 7 камер. Фиксация положения камер достигается направляющими 3. Подача католита в катодные камеры и анолита в анодные осуществляется через соответствующие коллекторы /, расположенные в днище электролизера. Отвод католита и анолита производится также раздельно через сливные карманы 2. Для токоподвода служат две титановые шины — анодная 5 и катодная 9, уложенные на отбортованные стенки электролизера и снабженные ножевыми контактами 6 и 10 для подключения соответственно анодов и катодов.  [c.231]

Коэффициенты использования для горизонтальной рабочей шины анодного заземления, состоящего из расположенных в ряд вертикальных трубчатых электродов, объединенных шиной в земле  [c.229]

Коэффициенты использования горизонтальной рабочей шины анодного заземления  [c.275]

При наличии блуждающих токов наиболее эффективным способом защиты является электродренажная защита. Основной принцип ее состоит в устранении анодных и знакопеременных зон на подземном металлическом сооружении. Это достигается отводом блуждающих токов с анодных зон сооружения в рельсовую часть цепи или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются.  [c.4]

Электродренажная защита - наиболее эффективная защита от коррозии под действием блуждающих токов. Основной принцип её состоит в устранении анодных зон на подземных сооружениях. Это достигается отводом дренажом блуждающих токов с участков анодных зон сооружения в рельсовую часть цепи, имеющую отрицательный или знакопеременный потенциал, или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются. При этом катодные зоны в местах входа блуждающих токов в сооружение сохраняются. Очевидно, что электрический дренаж работает только в том случае, когда разность потенциалов соору жение-элемент рельсовой сети положительна или искусственно становится положительной, т. е. потенциал ПСМ отрицательнее потенциала рельсовой сети.  [c.26]

Поскольку рельсовый путь не изолирован от грунта, то земля оказывается для блуждающих токов шунтирующим проводником, по которому протекает часть общего тока. Растекаясь в земле и встречая на своём пути металлические сооружения, удельное сопротивление которых значительно ниже удельного сопротивления земли, блуждающие токи натекают на них, стекая затем в зоне, близкой к отсасывающему пункту, и возвращаются через грунт в рельсы. Так как контактный провод подсоединён к плюсовой шине тяговой подстанции, а рельс - к отрицательной, то в местах выхода тока из рельса в землю на нём образуется анодная зона, и ток, стекая, разрушает подошву рельса и крепёжные костыли. В том месте, где блуждающие токи натекают на трубопровод, они вызывают его катодную поляризацию, а в местах стекания тока происходит анодная поляризация металла трубы, которая обусловливает коррозию трубы. Таким образом, в зонах действия блуждающих токов потенциал трубопровода смещается в анодных зонах в положительном направлении, в катодных - в отрицательном [14].  [c.28]


На рис. 20.6 показана технологическая схема установки для умягчения воды электрохимическим способом. Производственная установка была смонтирована в районной котельной, испытания которой длились около двух месяцев. Режим электрохимической обработки оказался устойчивым, осадка в катодных камерах не наблюдалось. Напряжение на подводящих шинах составляло 16 В, суммарный ток 1600 А. Общая производительность установки — 5 м /ч, скорость движения воды в анодных камерах 0,31н-0,42 м/мин, в зазоре между диафрагмой и катодом 0,12- 0,18 м/мин.  [c.488]

При перетяжке анодной рамы анод подвешивают на анодном кожухе, причем могут быть использованы два варианта. Временные зажимы (16—18 шт.) устанавливают на анодных штырях над специальными площадками, расположенными на анодном кожухе, и надежно закрепляют их. Если при этом ослабить контактные зажимы, прижимающие токоведущие штыри к анодной шине, анод не просядет, так как будет висеть на временных зажимах. Второй вариант заключается в том, что на анодный кожух устанавливается переносной портал, к верхней части которого с помощью тяг закрепляются штыри. И в этом случае, при ослаблении контакта между анодной шиной и штырями, анод не просядет, поскольку будет висеть на временных тягах.  [c.196]

После подвески анода одним из рассмотренных способов зачищают контактную часть штыря на высоту от существуюш,е-го положения до места нового контакта штыря с анодной ошиновкой, ослабляют все зажимы, прижимающие штыри к анодной ошиновке, и одновременно включают основной и вспомогательный механизмы. Основной механизм перемещает анодную раму вверх, а вспомогательный — анодный кожух вниз. Но, так как вспомогательный механизм расположен на движущейся вверх анодной раме, положение анодного кожуха по отношению к неподвижному катодному устройству будет оставаться неизменным. В процессе перемещения анодной рамы контакт между штырем и анодной шиной будет скользящим и поэтому возможны на некоторых штырях искрения.  [c.196]

На заре развития алюминиевой промышленности ошиновка выполнялась из медных шин, но в настоящее время она монтируется только из алюминиевых шин, так как это значительно дешевле. Для изготовления ошиновки используются шины, отливаемые на алюминиевых заводах на установках полунепрерывного литья, и лишь для отдельных элементов (анодные спуски для анодов с БТ) применяются катаные шины небольшого сечения. В настоящее время отливаются шины различных сечений — от 200 х 20 до 840 х 100 мм.  [c.204]

Чистка ребер охлаждения. Для снижения температуры ЖАМ ее охлаждают с помощью теплоотводящих ребер. Ребра изготавливаются из алюминиевых шин и устанавливаются в жидкую часть анода таким образом, чтобы они выступали над поверхностью массы на 150—200 мм. Благодаря высокой теплопроводности ребра отводят большое количество тепла от анода, которое рассеивается в окружающую среду. Обслуживание ребер заключается в поддержании их в чистом состоянии (очистке от налипшей анодной массы) и регулировке по высоте. Нельзя допускать запекания ребер в тело анода.  [c.226]

Ток по элементам электролизера течет вертикально — вверх и вниз (анод, стояки) горизонтально — вдоль и поперек ванны (анодные и катодные шины, катодные блюмсы), и поэтому магнитная индукция в каждой точке ванны имеет сложную картину. Следовательно, определение величины и анализ напряженности поля удобнее производить по ее проекциям на плоскость, параллельную подошве анода и расположенную посередине слоя расплавленного алюминия. Для электролизеров, расположенных в корпусе продольно, начало координат выбирают у основания перпендикуляра, опущенного на указанную плоскость из правого переднего (по ходу тока) угла анода. Ось X направляют по ходу тока, ось У — поперек ванны, а ось Z — вверх. Для электролизеров с поперечным расположением ванн в корпусе принято ось X размещать поперек ванны, а ось Y — вдоль нее.  [c.265]

Анодные, катодные и обводные шины блюмсы  [c.266]

Для двухстороннего токоподвода при двухрядном расположении ванн в корпусе (вне зависимости от вида токоподвода) очень важно скомпенсировать влияние соседнего ряда ванн. Наиболее просто эта задача решается путем более высокого расположения катодных и обводных шин по отношению к уровню металла и увеличением силы тока на обводных шинах, расположенных на ближней к соседнему ряду стороне электролизера. Вследствие этого вертикальная составляющая напряженности магнитного поля от собственных токов в анодных, катодных и обводных шинах, а также в гибких анодных пакетах будет распределена асимметрично по отношению к продольной оси электролизера. Схема такой ошиновки приведена на рис. 7.2. Как видно, распределение тока на входном  [c.273]


До недавнего времени при рассмотрении влияния магнитного поля на технологию ванны не учитывалось влияние стальных элементов ванны на магнитное поле, что может внести определенные ошибки в результаты расчетов. Поэтому наиболее убедительным способом оценить качество ошиновки является эксперимент, т.е. исследования ошиновки на модели. Однако такой путь дорог и долог и потому к настоящему времени разработаны программы, позволяющие с помощью расчетов на ЭВМ учесть влияние основных стальных масс (катодный кожух, анодная балка, чугунные плиты перекрытия шинных каналов и пр.) на значения составляющих магнитного поля. Но до сих пор конструкция электролизера принимается к широкому внедрению только после тщательной проверки ее на опытных участках.  [c.277]

Гибкий пакет — анодная шина 0,003  [c.291]

Снижение до оптимальных значений рабочего напряжения, так как расход энергии прямо пропорционален его величине. Снижению рабочего напряжения способствует минимизация потерь напряжения во всех токоведущих частях, включая и электролит, а также снижение частоты и продолжительности анодных эффектов. Необходимо отметить, что в связи с ростом в последние годы стоимости электроэнергии следует откорректировать экономически выгодную плотность тока, при которой достигается минимизация суммы капитальных затрат на сооружение ошиновки и текущих расходов на потери энергии в ней. По нашим прикидкам, экономически выгодная плотность тока должна быть ниже ныне существующей плотности тока. Весьма выгодно охлаждать катодную ошиновку в одноэтажных корпусах, так как увеличение температуры ошиновки на 10 °С приводит к увеличению потерь энергии в ней на 4 %. Снизить же температуру ошиновки можно путем рациональной подачи приточного воздуха через шинные каналы, где он снизит температуру шин и подогреется, что весьма полезно в холодное время года, длительность которого в районах расположения большинства заводов достаточно велика.  [c.409]

Силовые линии при электролизе распределяются неравномерно, концентрируясь в нижней части электродов. Поэтому нижняя часть анодов растворяется быстрее верхней. Во избежание этого аноды иногда отливают утолщенными книзу. Для лучшего контакта с токоподводящими шинами и снижения выхода анодных остатков удобно пользоваться сплошными анодами, отлитыми вместе с ушками для подвешивания в ванну. Аноды массой до 10 кг рассчитаны на растворение в течение 2—3 сут.  [c.321]

Аноды отливают из свинца с добавкой 1 % серебра, повышающего их коррозионную стойкость. Поверхность анодов может быть рифленой или гладкой Прокатанные аноды толщиной 5 мм в два-три раза жестче, чем литые толщиной 8 мм, а срок службы их в два раза больше (до 4 лет). Анодную штангу из освинцованной медной шины приваривают к аноду водородной сваркой.  [c.289]

Для защиты трубопроводов от действия блуждающих токов используют дренаж — соединение металлической шиной источника блуждающих токов, например, рельсов, с их приемником, например, трубопроводом. Если дренаж установить невозможно, то в направлении рельса закапывают специальный анод из чугуна, который соединяют с анодной областью трубопровода медным проводником. Тогда блуждающий ток вызывает коррозию только этого специального анода. Если дополнительного анода недостаточно, то в цепь между анодом и трубой включают источник постоянного тока противоположного направления. Для уменьшения разрушающего действия блуждающих токов используют также изолирующие прокладки в местах стыка трубопровода.  [c.156]

Штыри при помощи специальных эксцентриковых зажимов крепятся к анодной раме. Назначение рамы — удерживать анод в горизонтальном положении и подводить ток к штырям. Анодную раму, как правило, изготавливают из стальных балок, вдоль которых монтируют токоподводящие алюминиевые шины. В наиболее современных конструкциях электролизеров анодная рама полностью выполнена из алюминиевого сплава и, обладая высокой электропроводностью, является несущей конструкцией. В современных конструкциях электролизеров этого типа на силу тока 150—160 кА масса анода со штырями составляет 70—80 т.  [c.250]

Ошиновка является токонесущим элементом конструкции электролизера и делится на две части — анодную и катодную. Электролизеры, располагаемые рядами один за другим, соединяются токопроводами из алюминиевых шин различного сечения и включаются в электрическую цепь последовательно катодные шины одного электролизера соединены с анодными шинами другого. Группа электролизеров, объединенная в одну цепь, называется серией.  [c.253]

Анодная шина — анодный штырь (ВТ) 0,002 Анодная шина — штанга анододержателя (ОА) 0,001  [c.291]

Дренажные установки, которые являются наиболее эффективным методом, отводят блуждающие токи из анодной зоны подземного сооружения в рельсовую сеть или на отрицательную шину тяговой подстанции (рис. 281). Прямой дренаж имеет двухсторон-  [c.396]

Медь. Плотность р = 8,94 г/см , = 1083° С кристаллизуется в решетку ГЦК (К12), удельное электросопротивление (при 20° С) 0,0168 ом-мм /м, температурный коэффициент электросопротивления ТКр = 0,0041 1/°С, теплопроводность Я = 0,92 кал/(см-сек-град), после отжига (Tg = 240 Мн/м 24 кгс/мм ), 6 = 50% после нагар-товкн а = 450 Мн/м (45 кгс/мм ), 6 = 6%. Марки меди МО (99,95% Си), М1 (99,9% Си), М2 (99,7% Си), М3 (99,5% Си), М4 (99,0% Си), примеси в меди (Р, О, Fe, Bi, Pb, Sn и др.) уменьшают ее электропроводность. Мягкую медь применяют для прокладок, шайб, анодных блоков магнетронов. Нагартованную медь применяют для коллекторов, шин, экранов в радиоустановках, волно-  [c.265]

Как видно на схеме (см. рис. 12.3), предусмотрено в общей сложности три ферросилидовых анодных заземлителя массой по 3 кг, устанавливаемых в точках Я], Д2 и аз. Заземлители установлены вертикально в скважины глубиной около 2,3 м и диаметром 0,2 м в слой мелкозернистого кокса (активатора) высотой около 1 м. Для контроля тока анодных заземлителей, каждый из них соединен своим отдельным кабелем со сборной шиной преобразователя. Для возвращения защитного тока к станции применены три катодных кабеля сечением 2x4 мм , прикрепленные к резервуару при помощи подсоединительных планок на штуцере (патрубке) купола.  [c.277]


Влияние блуждающих токов можно предупредить или совсем устранить применением установок электродренажной зацщты, принцип работы которой заключается в устранении анодных зон на подземных трубопроводах при сохранении катодных зон. Это достигается отводом (дренажом) блуждающих токов с участков анодных зон в рельсовую цепь электротяги или на сборную шину отсасывающих кабелей тяговой подстанции. В зависимости от условий применения дренажные установки можно разделить на 4 группы - прямые, поляризованные, усиленные электродренажные установки и поляризованные протекторные установки (рис. 25).  [c.110]

Аноды угольные в виде блоков размером 400Х400Х Х550 мм применяют в производстве алюминия. Они имеют два ниппельных гнезда — углубления, в которых заливают чугуном две стальные полосы, верхние концы которых присоединяют к анододержателю, укрепленному на анодной шине. В зависимости от размеров ванны устанавливают 12 22 анода и более в двух параллельных рядах.  [c.382]

Хилшческая и концентрационная поляризация на отдельных электродах вызывает вместе анодную или катодную поляризацию ЭДС поляризации в процессе электролиза направлена против ЭДС постоянного тока, приложенного к шинам ванны.  [c.20]

Анодные штыри в настоящее время выполняют составными — верхняя часть, которая с помошью зажима 2 (см. рис. 5.11) контактирует с анодной шиной 1, изготавливается из алюминия, а нижняя, которая запекается в теле анода, стальная. Это позволяет снизить потери энергии в штырях и улучшить распределение магнитного поля в аноде вследствие магнитного разрыва, образованного алюминиевыми штангами. Но и до настоящего времени находятся в эксплуатации штыри, полностью выполненные из стали, но имеющие в верхней части приваренный сектор из медной пластины для улучшения контакта межу анодной шиной и штырем. Общее количество штырей зависит от силы тока и обычно составляет 64—72 шт. Общая длина анодных штырей равна 2000—2500 мм, а длина токоведущей части зависит от положения анодной рамы (см. разд. 5.3.3),  [c.193]

Установка нового анода. Перед установкой анода зачищается место контакта на штанге и анодной шине затем необходимо подготовить место для установки нового анода — очистить электролит от сколов и кусков анода, извлечь куски корки, подтянуть осадок, оплескать боковые поверхности рядом стоящих анодов установить анод в подготовленное место, совместив по высоте подошву нового анода с рядом стоящими, используя для этого специальный крючок, и закрепить штангу к анодной шине, затянув для этого контактный узел. Не позднее чем через час новый анод должен быть засыпан глиноземом или возвратом криолитоглиноземной смеси от очистки огарков.  [c.230]

Уход за непрерывными самообжигающимися анодам сводится к наращиванию кожуха, загрузке анодной масс1 забивке или установке штырей и переключению гибких т< Коподводящих шин к очередной группе штырей. Алюминж вый кожух наращивают примерно один раз в месяц, а з грузку анодной массы — один раз в 7—10 дней. Ванны верхним токоподводом требуют меньших затрат труда времени на обслуживание анода.  [c.356]

Рафинирование электролизом трехслойного расплава. Алюминий марки раффинал в ФРГ получают из технического или вторичного алюминия в электролизерах, вполне подобных электролизерам для выплавки технического алюминия, лишь подключение тока обратное. Анодную шину подводят к поду печи, на котором находится расплавленный утяжеленный медью анодный  [c.58]

Воду отделяют от А1(ОН)з фильтрованием, после чего гидрооксид обезвоживают нагреванием в печах и образующийся глинозем подают в электролизные ванны. Алюминий получают электролизом глинозема в расплавленном криолите ЫазА . Сварные стальные ванны футеруют изнутри угольными блоками /, а у стенок — шамотным кирпичом. Стальные катодные шины 4 вмонтированы в футеровку, благодаря чему угольный слой футеровки является катодом. Анодами 5служат самообжигающиеся угольные электроды, которые по мере обгорания снизу наращиваются сверху анодной массой, отвердевающей в результате коксования. Температура электролита 2 порядка 950 °С. Глинозем, расходуемый в ходе электролиза, загружается в ванну сверху, для чего твердая корка электролита периодически проламывается. При этом происходит удаление Oj в атмосферу  [c.193]

В анодную часть ошиновки входят гибкие пакеты, анодные стояки и уравнительные шины, от которых ток при помощи специальных контактов передается к штырям (самообжигающиеся аноды) или штангам (обожженные аноды). Катодная часть ошиновки состоит из гибких лент — катодных спусков, отводящих ток от катодных стержней подины, и катодных шин.  [c.253]


Смотреть страницы где упоминается термин Шины анодные : [c.168]    [c.568]    [c.202]    [c.203]    [c.276]    [c.85]    [c.107]    [c.237]    [c.194]    [c.205]    [c.287]    [c.218]    [c.253]    [c.255]   
Общая металлургия Издание 3 (1976) -- [ c.424 ]



ПОИСК



Анодный

Шины



© 2025 Mash-xxl.info Реклама на сайте