Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние материала плоское (двумерное)

Теория термоупругости и аналитические методы решения задач термоупругости достаточно подробно разработаны [5, 18, 34, 35]. Однако для реальных элементов теплонапряженных конструкций сложной формы, выполненных из разнородных материалов с зависящими от температуры механическими характеристиками, редко удается воспользоваться аналитическими методами для определения параметров напряженно-деформированного состояния, необходимых для последующего суждения о работоспособности конструкции. В таких случаях более гибкими и универсальными являются численные методы, в частности, построенные на интегральной формулировке задачи методы конечных элементов (МКЭ) и граничных элементов (МГЭ), которые кратко рассмотрены в этой главе применительно к решению плоской, двумерной осесимметричной и пространственной задачи термоупругости. Помимо самостоятельного значения, связанного с анализом работоспособности теплонапряженных конструкций, материал которых вплоть до разрушения работает в упругой области, численные методы решения задач термоупругости также используются при анализе неупругого поведения конструкций, когда он проводится последовательными приближениями или последовательными этапами нагружения и на каждом приближении или этапе решается соответствующая задача термоупругости.  [c.219]


Рассмотрим решение двумерной задачи прессования круглого прутка в жесткой конической матрице, основанное на исследовании течения материала в коническом канале, проведенном В. В. Соколовским [121 ]. В этом решении предполагается, что течение является радиальным и используется модель нелинейно-вязкого т-ела. Уравнение состояния для этого случая следует из уравнения (2.100) при = О, tUi т. Тогда начальный участок кривой ползучести — прямая линия. Так же, как и для плоской задачи (см. 38), В. В. Соколовским показано, что и для осесимметричной задачи решение ее сводится к интегрированию  [c.150]

Применения метода конечных элементов к задачам механики деформируемого твердого тела очень обширны. Сюда относятся задачи теории упругости, задачи теории пластин и оболочек, задачи расчета конструкций, составленных из пластин и оболочек, анализ упругопластического и вязкоупругого поведения материала, динамические задачи, расчет составных конструкций. Данная глава посвящена задачам теории упругости. Другие области механики деформируемого тела рассматриваться не будут. Мы обсудим здесь общие случаи одномерных, двумерных и трехмерных задач теории упругости, а также специальный случай задач с осевой симметрией. Кроме того, будет рассмотрена машинная реализация задачи о плоском напряженном состоянии.  [c.211]

Двумерные задачи теории упругости намного сложнее одномерных, поскольку в случаях плоского напряженного или плоского деформированного состояния может иметь место анизотропия материала. Каждому из этих двух состояний соответствует своя матрица упругих характеристик [О].  [c.218]

Во многих физических задачах геометрия и свойства материала не зависят от одной из координат. Однако нагрузка в этом направлении может быть переменной, что мешает непосредственному переходу от трехмерной задачи к двумерной задаче о плоском деформированном состоянии. В таких случаях все же можно рассматривать упрощенную задачу меньшей размерности (без координаты, вдоль которой свойства не изменяются) и полное решение составить из набора упрощенных решений.  [c.274]

Рассмотрим сначала случай несжимаемого материала. При вдавливании без трения двумерного клина напряжение ax на границе контакта равно нормальному давлению р (см. соотношение (2.26)). Если V = 0.5, то осевое напряжение oz Для поддержания условий плоской деформации также должно быть равно р. Таким образом, на поверхности контакта реализуется гидростатическое напряженное состояние. Вершина является особой точкой.  [c.179]


Предложен метод решения задач двумерного нестационарного деформирования идеального жесткопластического материала в условиях плоского напряженного состояния. Предложенный метод использован для численного расчета напряженного и кинематического состояний в процессе деформирования 1шоского кольцевого фланца при осесимметричной вытяжке.  [c.117]

Таким образом, напряжения в конце распространяющейся трещины изменяются во времени осциллирующим образом, и для их точного расчета необходимо учитывать распространение волн. Каннинен [14], Шмуэли и Перец [15], а также Уилкинс (частное сообщение) применяли одно-, двух- и трехмерные модели распространения волн соответственно для геометрии образца ДКБ. В данной работе распределение напряжений в образце во все моменты времени вычислялось с использованием T00DY3 [16], использующей двумерное описание распространения волн в переменных Лагранжа. Принимались условия плоской деформации. Эта программа дает решение уравнений сохранения массы, количества движения и энергии в случае двух пространственных переменных при последовательных малых шагах времени (t),5 мкс) и позволяет рассчитывать таким образом двумерное напряженно-деформированное состояние. Простейшая форма определяющего уравнения материала была построена на основе данных, полученных на нестандартном круглом образце, испытывавшемся в условиях растяжения и изготовленном из разрушенных половинок образца ДКБ.  [c.128]

Мы не станем полностью выписывать уравнения для общего-случая трехмерного медленного установившегося течения идеально иластичного вещества, поскольку попытки получения общего-решения для этих уравнений следует признать безнадежными. В последующих главах будут рассмотрены некоторые важные частные вопросы, например случай симметрии вращения и двумерное плоское напряженное состояние. Введение основных уравнений (27.1) [или (27.2)] предполагает, что составляющие напряжения в любом элементе материала при бесконечно малой деформации остаются неизменными. Поле напряжений в теле предполагается стационарным ).  [c.457]

I расчета конструкций, составленных из пластин и оболочек, ана-тз упругопластического и вязкоупругого поведения материала, шамические задачи, расчет составных конструкций. Данная гла-а посвящена задачам теории упругости. Другие области меха-нки деформируемого тела рассматриваться не будут. Мы обсу-ям здесь общие случаи одномерных, двумерных и трехмерны адач теории упругости, а также специальный случай задач с осе-ой симметрией. Кроме того, будет рассмотрена машинная реали-ацня задачи с плоском напряженном состоянии.  [c.211]


Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.78 , c.381 , c.388 , c.392 , c.402 , c.411 , c.429 , c.431 , c.439 , c.444 , c.523 , c.524 , c.525 , c.529 , c.531 , c.534 , c.546 , c.566 , c.620 , c.655 ]



ПОИСК



Материал двумерный

Состояние материала

Состояние плоское

Тор двумерный



© 2025 Mash-xxl.info Реклама на сайте