Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Превращение аустенита

В доэвтектоидных сталях превращение аустенита начинается с образования феррита и обогащения углеродом оставшегося 7-раствора, заэвтектоидных — с выделения цементита и обеднения углеродом аустенита. В условиях равновесия распад аустенита на феррит и цементит (т. е. перлитное превращение) наступает тогда, когда содержание углерода в аустеиите, оставшемся после выделения избыточных феррита или цементита, будет соответствовать точке 5 (0,8 % ).  [c.250]


Приведенная на рис. 53 С-образная кривая начала превращения справедлива для эвтектоидных сталей. В доэвтектоидных сталях превращение аустенита начинается с образования феррита, в результате чего оставшийся аустенит обогащается углеродом. В за-эвтектоидных сталях это превращение начинается с выделения цементита при этом остающийся аустенит обедняется углеродом. Превращение аустенита в до- и заэвтектоидных сталях наступает тогда, когда содержание углерода в нем (после выделения феррита или цементита) достигнет 0,8%. Для этих сталей в верхней части С-образной кривой добавляется штриховая кривая, связанная с началом выделения феррита.  [c.153]

В доэвтектоидных сталях превращение аустенита начинается с образования феррита. Сталь концентрации /С, при температуре, соответствующей точке 2, начинает превращаться в феррит, который почти не растворяет углерода. При температуре точки Ь растворимость углерода в перлите определяет точка а. Оставшийся  [c.89]

Рассмотрим теперь процесс изотермического превращения аустенита в доэвтектоидных сталях. Превращение аустенита в этих сталях связано, как известно, с выделением структурно свободного феррита при охлаждении в критическом интервале. Относительное количество свободного феррита при этом тем больше, чем меньше содержание углерода в стали.  [c.129]

Наиболее прогрессивным методом закалки, обеспечивающим сочетание высокой прочности, пластичности и вязкости, является изотермическая закалка. При изотермической закалке сталь охлаждают тоже в горячей среде (соляных, селитряных или щелочных ваннах). Температура нагрева среды различна в зависимости от состава стали, но всегда на 20—100° выше точки для данной стали. Превращение аустенита в игольчатый троостит происходит во время изотермической выдержки стали. После этого сталь охлаждают на воздухе. Изотермической закалке особенно часто подвергают изделия из высоколегированных сталей.  [c.134]

В том случае, когда в высоколегированных сталях превращение аустенита происходит при пониженных температурах (в бейнитной или мартенситной областях), температура начала появления флокенов при умеренном содержании водорода снижается до комнатной температуры или даже появление флокенов происходит после длительной выдержки заготовок при комнатной температуре. В последнем случае имеет место так называемый инкубационный период.  [c.81]

При достижении сплавом точки 3 состав аустенита примет эвтектоидную концентрацию и при постоянной температуре будет происходить превращение аустенита в перлит (горизонтальный участок 3—3 на кривой охлаждения). После окончания превращения структура стали будет состоять из феррита и перлита. Она показана на рис. 143.  [c.175]


Пока мы рассмотрели превращение аустенита в перлит, протекающее в сталях, по составу близких к эвтектоидному. Если содержание углерода в стали отлично от эвтектоидного, то, как следует из диаграммы железо — углерод, превращению аустенита в перлит предшествует выделение феррита или цементита.  [c.250]

После рассмотрения процесса превращения аустенита при постоянной температуре и разных степенях переохлаждения можно перейти к рассмотрению процесса распада аустенита при непрерывном охлаждении, когда сталь, нагретая до аусте-нитного состояния, охлаждается с разной скоростью.  [c.253]

Раньше мы приводили лишь схемы диаграмм превращения аустенита. Для полной информации о превращении аустенита той или иной марки стали необходимо обе диаграммы и ряд дополнительных сведений марка и состав стали, температура нагрева, размер зерна аустенита, а также свойства (хотя бы твердость) продуктов распада и соотношение структурных составляющих. Это мы видим на рис. 200, где приведены диаграммы изотермического и анизотермического превращения аустенита стали марки 40Х.  [c.258]

В легированных сталях при 400—300°С вновь может начаться ускоренное превращение аустенита, поэтому их необходимо в этом интервале темпе-рату/р охлаждать достаточно быстро, со скоростью, в некоторых случаях даже большей, чем при 400—600°С.  [c.291]

Чем больше углерода содержит сталь, тем больше объемные изменения при превращении, тем при более низкой температуре происходит превращение аустенита в мартенсит, тем больше опасность возникновения деформаций, трещин, напряжений и других закалочных пороков, тем тщательнее следует выбирать условия закалочного охлаждения для такой стали.  [c.302]

Способ ступенчатой закалки лишен этих недостатков. Деталь охлаждается в закалочной среде, имеющей температуру выше мартеиситной точки для данной стали. При охлаждении и выдержке в этой среде закаливаемая деталь должна приобрести во всех точках сечения температуру закалочной ванны. Затем следует окончательное, обычно медленное, охлаждение, во время которого и происходит закалка, т. е. превращение аустенита в мартенсит. Разбивка охлаждения на две ступени  [c.304]

В отличие от ступенчатой при изотермической закалке необходимо выдерживать сталь в закалочной среде столько времени, чтобы успело закончиться изотермическое превращение аустенита.  [c.305]

Продолжительность выдержки в закалочной среде определяется временем превращения аустенита при данной температуре (ее находят по диаграмме изотермического распада аустенита для данной стали).  [c.305]

При отжиге скорость охлаждения должна быть такова, чтобы успели произойти превращения аустенита при малой степени переохлаждения. Практически скорость охлаждения не должна быть больше 50—100°С/ч, что достигается охлаждением в печи, В заводской практике с целью экономии времени чаще проводят так называемый изотермический отжиг. Для этого сталь, нагретая выше верхней (или только нижней) критической точки, охлаждается быстро (точнее, с любой скоростью) до температуры, лежащей на 50—100°С ниже равновесной точки Ai и при этой температуре выдерживается столько, сколько необходимо для полного распада аустенита (рис. 250). Поскольку температуру контролировать легче, чем скорость охлаждения, такой отжиг дает более стабильные результаты. В настоящее время изотермический отжиг применяют чаще.  [c.310]

Кинетика распада аустенита, как мы видели в гл. X, определяет поведение стали при термической обработке. Влияние же легирующих элементов на кинетику превращения аустенита очень велико.  [c.355]

Ввиду высокого содержания легируюш,их элементов и низкого содержания углерода охлаждение при закалке можно осуществлять с любой скоростью без опасения образования не-мартенситных продуктов превращения аустенита. В наиболее распространенной по составу стали типа стареющий мартенсит с <0,03% С 18% Ni 10% Со 5% Мо 0,5% Ti 0,1% А1 мартенситное превращение начинается при 150—200°С и заканчивается практически полностью (<10% остаточного аустенита) при комнатной температуре. При содержании никеля более 18% мартенситное превращение заканчивается в области отрицательных температур, для этих сталей требуется обработка холодом, но, правда, свойства получаются более высокие (см. дальше).  [c.394]


Изотермическое превращение аустенита в доэвтектоидных и заэвтектоидных сталях (рис. 105) отличается от превращения в эвтек-тоидной стали тем, что в верхнем интервале температур сначала выделяются избыточные фазы — феррит (в доэвтектоидной стали) или избыточный цементит (в заэвтектоидной стали).  [c.166]

При непрерывном нагреве стали образование аустенита происходит в определенном интервале температур и чем быстрее, тем шире этот интервал и больше скорость превращения перлита в аустенит.  [c.90]

При изотермическом превращении у доэвтектоидных сталей из аустенита выделяется феррит (рис. 8.10), а у заэвтектоидных сталей — цементит.  [c.97]

Превращения аустенита при непрерывном охлаждении характеризуются термокинетическими диаграммами (рис. 8.13). По ним можно определить верхнюю Укр и нижнюю о р критические скорости, а также скорости охлаждения, соответствующие появлению феррита, завершению феррито-перлитного превращения и началу превращения в средней области. При охлаждении аустенитной стали происходит перлитное, мартенситное и промежуточное превращения.  [c.99]

Превращение аустенита в мартенсит (являющийся основной структурной составляющей закаленной стали и определяющий ее свойства) отличается от всех других превращений в твердом состоянии. Мартенситное превращение возникает мгновенно и развивается с огромной скоростью, когда температура при охлаждении достигает точки М (начала мартенситного превращения). Эта температура не понижается с увеличением скорости охлаждения. Процесс при этом останавливается и значительная часть аустенита остается непревращенной. Повышение скорости охлаждения ниже температуры мартенситной точки увеличивает количество образующегося мартенсита и уменьшает количество остаточного аустенита.  [c.102]

Мартенсит может образовываться и цри изотермическом превращении аустенита. Так у сталей с мартенситной точкой ниже 100° С количество мартенсита может достигать десятков процентов.  [c.103]

Изменения свойств стали при закалке являются результатом образования неравновесных структур мартенсита, тростита, сорбита. Закалка основана на фазовых превращениях при нагреве и охлаждении. Быстрое охлаждение стали при закалке предотвращает превращение аустенита в перлит, вследствие чего и образуется одна из промежуточных структур распада аустенита мартенсит, тростит или сорбит. Применяя различные охладители при закалке, можно подобрать определенную скорость охлаждения, необходимую для получения требуемых структуры и свойств.  [c.118]

На рис. 11.16 приведены диаграммы кинетики изотермического превращения аустенита. Увеличение содержания С в стали приводит  [c.168]

Рис. 14.11. Изотермическое превращение аустенита в сталях Рис. 14.11. <a href="/info/116881">Изотермическое превращение</a> аустенита в сталях
При закалке сталей превращение аустенита в мартенсит бывает полным только в исключительных случаях. В большинстве же случаев сохраняется большее количество аустенита, которое обладает повышенным содержанием углерода и других элементов, понижающих мартенситную точку, таких какМп, N1, Со, N. Кроме химического состава, сохраняющееся количество остаточного аустенита существенно зависит от условий термической обработки и от роста зерна аустенита.  [c.231]

Рис. 200. Диаграмма изотермического (а) и анизотермического (б) (термокинетического) превращения аустенита а стали 45Х (Ф. Вефер). Состав стали 0,44% С 0,22% S1 0,80% Мп 1,04% Сг. В кружках цифры твердости продуктов распада HR цифры без кружков — количество структурной составляющей Рис. 200. <a href="/info/191298">Диаграмма изотермического</a> (а) и анизотермического (б) (термокинетического) превращения аустенита а стали 45Х (Ф. Вефер). <a href="/info/696742">Состав стали</a> 0,44% С 0,22% S1 0,80% Мп 1,04% Сг. В кружках цифры твердости продуктов распада HR цифры без кружков — количество структурной составляющей
Некоторые легирующие элементы снижают точку мартенсит-ного превращения, и поэтому в некоторых легированных сталях, содержащих достаточное количество углерода и легирующих элементов, точка Л н расположена ниже 0°С и закалкой можно получить чистую аустенитную структуру (см. гл. XIV, п. 6). Из этого следует, что температура образования мартенсита зависит в основном от состава стали (состава аустенита).  [c.263]

Увеличение содержания легирующих элементов приводит,, как мы уже знаем, к увеличению устойчивости переохлал-сден-ного аустенита. В конструкционных сталях обычного состава содержание легирующих элементов таково, что становится возможной закалка в масле. В некоторых сталях с несколькими легирующими элементами (например, в хромовольфрамовых или хромоиикельмолибденовых сталях) перлитное превращение аустенита настолько задерживается, что охлаждением детален больших размеров на спокойном воздухе достигается переохлаждение аустенита до температур мартенситного превращения.  [c.371]

При переохлаждении аустенита до температуры, равной или ниже мapтeн m oй точки (/И ), соответствующей температуре начала нре-вращения переохлажденного аустенита в мартенсит (рис. 101, б), диффузионные процессы полностью подавляются и образование структуры, состоящей из феррита и цементита, становится невозможным. В этом случае протекает бездиффузионное превращение аустенита в структуру закаленной стали, называемую мартенситом.  [c.163]


Смотреть страницы где упоминается термин Сталь Превращение аустенита : [c.174]    [c.135]    [c.150]    [c.234]    [c.264]    [c.291]    [c.154]    [c.162]    [c.166]    [c.171]    [c.173]    [c.214]    [c.281]    [c.97]    [c.242]    [c.636]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.338 ]



ПОИСК



Аустенит

Изотермическое превращение аустенита в легированных сталях

Методы оценки технологической прочности сталей в процессе превращений аустенита

Особенности превращения аустенита в легированных сталях

Превращение

Превращение в аустенит углеродистых и легированных сталей при сварке

Сталь Превращение

Сталь Превращение аустенита изотермическо

Сталь Превращение аустенита изотермическое

Сталь Превращение аустенита изотермическое Диаграммы

Сталь Скорость превращения аустенита - Схем

Сталь алюминиевая - Превращение аустенита Диаграммы

Сталь кобальтовая - Превращение аустенита Скорость - Схемы

Сталь медистая-Превращение аустенита изотермическое

Сталь молибденовая - Превращение аустенита

Требования к условиям построения диаграмм анизотермического превращения аустенита с целью их использования для выбора технологии и режимов сварки перлитйых сталей

Шахназаров, Н. И. Воробьева. Исследование превращений аустенита в мартенситостареющих сталях

ные Превращение аустенита



© 2025 Mash-xxl.info Реклама на сайте