Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая и практические температурные шкалы

ТЕРМОДИНАМИЧЕСКАЯ И ПРАКТИЧЕСКИЕ ТЕМПЕРАТУРНЫЕ ШКАЛЫ  [c.37]

Термодинамическая И Практические Температурные Шкалы  [c.39]

Термодинамическая и практические температурные шкалы  [c.41]

Термодинамическая и практические Температурные шкалы  [c.51]

Температура по термодинамической и практической температурным шкалам может быть выражена в кельвинах (К), когда она отсчитывается от абсолютного нуля (обозначается символом Т), и в градусах Цельсия (°С), когда она отсчитывается от точки таяния льда (обозначается символом t). Связь между этими температурами выражается формулой.  [c.172]


В указанном проекте стандарта предусмотрено, что измерение температуры производится по термодинамической и практическим температурным шкалам.  [c.139]

Термодинамическая температура (Т) определяется по шкале Кельвина, где за точку отсчета принимается абсолютный нуль температуры. Связь между температурной шкалой Кельвина и практической температурной шкалой Цельсия устанавливается соотношением Т = t + 273,15 (где температура t измеряется в градусах Цельсия).  [c.9]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]

Этот же ГОСТ предусматривает применение двух температурных шкал термодинамической температурной шкалы, основанной на втором законе термодинамики, и международной практической температурной шкалы, являющейся практическим осуществлением термодинамической температурной шкалы с помощью реперных (опорных) точек и интерполяционных уравнений.  [c.11]

Температура характеризует степень нагретого тела. Ее измеряют или по термодинамической температурной шкале, или по международной практической температурной шкале. Единицей термодинамической температуры является кельвин (К), представляющий собой 1/273,16 часть термодинамической температуры тройной точки воды. Эта температура равна 273,16 К и является единственной воспроизводимой опытным путем постоянной точкой термодинамическом температурной шкалы (реперная точка).  [c.7]


Кельвин —1/273,16 термодинамической температуры тройной точки воды. Это определение было дано в резолюции Десятой Генеральной конференции по мерам и весам (1954). Вместе с тем по Международной практической температурной шкале для тройной точки воды принята температура < = 0,0 Г С точно.  [c.64]

Существуют две температурные шкалы термодинамическая температурная шкала и международная практическая температурная шкала 1948 г.  [c.12]

Единицами измерения температуры по термодинамической шкале являются градус Кельвина — °К и термодинамический градус Цельсия — °С (терм.) по международной практической температурной шкале — международный практический градус Цельсия — °С (межд. 1948) и международный практический градус Кельвина — °К (межд. 1948)  [c.12]

Однако пользование газовым термометром представляет большие практически неудобства, поэтому бьшо выбрано несколько постоянных опорных точек, воспроизведение которых в лабораторных условиях не составляет большого труда. Одна из этих точек задается самим определением термодинамической шкалы — это тройная точка воды, которой приписана неизменная температура 273,16 К. Остальные точки установлены на основании как можно более тщательных измерений. Все эти точки представляют собой температуры фазовых переходов разли шых веществ. На основе измерения температур этих точек в 1968 г. установлена Международная практическая температурная шкала ). Поскольку из.мерения по этой шкале не могут гарантировать абсолютно точного совпадения с термодинамической шкалой, температурам по шкалам Кельвина и Цельсия присвоены символы T es и / в. числе опорных точек имеются тройные точки водорода (T es = 13,81 К) и воды (Гб 8 = 573,16 К) и ряд точек равновесия двух фаз различных веществ. Значения опорных постоянных точек Международной практической температурной шкалы приведены в приложении XII.  [c.193]

В заключение упомянем об одном интересном применении уравнения Клапейрона— Клаузиуса. Как отмечалось в 3-4, чрезвычайно важной задачей является введение поправок к любой эмпирической (практической) температурной шкале для приведения ее к термодинамической шкале температур, т. е. для построения термодинамической шкалы по данной конкретной эмпирической температурной шкале (например, по шкале газового термометра). В гл. 3 было приведено уравнение, дающее величины поправок к международной практической шкале температур для приведения ее к термодинамической шкапе. Но как были определены сами эти поправки Для определения этих поправок, т. е. раз. ницы между температурами по термодинамической (Г) и практической (Т ) шкалами или, иными словами, зависимости T=f (Т ), существуют разные методы. Один из них основан на использовании уравнения Клапейрона—Клаузиуса.  [c.144]

Современная температурная шкала построена на термодинамической основе и тождественна шкале идеального газа. В настоящее время применяется Международная практическая температурная шкала 1968 Основной единицей температуры является кельвин, обозначаемый символом К. 1  [c.210]

Международная практическая температурная шкала основана на шести реперных точках — температурах равновесия, определенных с помощью газовых термометров и выраженных в термодинамической стоградусной шкале температуры (табл.  [c.248]

Теоретической основой построения термодинамической температурной шкалы является обратимый цикл Карно в тепловой системе. Идеальная тепловая машина, работающая по циклу Карно, неосуществима, а измерения термодинамической температуры с помощью газового термометра требуют сложного оборудования и трудны экспериментально, поэтому VII Генеральной конференцией по мерам и весам (1927 г.) принята для практических измерений Международная практическая температурная шкала. IX Генеральная конференция утвердила уточненное Положение о Международной практической температурной шкале 1948 г. , а XI Генеральная конференция приняла новое Положение о Международной практической температурной шкале 1948 г. Редакция 1960 г. [2]. В этом Положении говорится  [c.69]


В книге английского ученого Т. Куинна, заместителя директора Л еждународного бюро мер н весов, обобщены результаты развития термометрии за последние 25 лет в интервале температур от 0,5 до 3000 К и обсуждается ее современное состояние. Подробно рассмотрены принципы построения термодинамической и практических температурных шкал, возможности различных методов точного измерения термодинамической температуры, термометры сопротивления н термопары, реперные точки температурных шкал, перспективы совершенствования действующей сегодня МПТШ-б8, а также некоторые наиболее важные случаи измерения температуры в промышленных условиях.  [c.4]

По-видимому, именно это исключительное обилие материала и вытекающих отсюда трудностей его систематизации и критической оценки послужило причиной практически полного отсутствия крупных обзоров по термометрии, а тем более монографий. Этот серьезный пробел в значительной мере восполняет книга Т. Куинна. Главное внимание в ней уделено принципиальным вопросам температуре как параметру состояния системы, термодинамической и практическим температурным шкалам и связанной с ними технике измерения температуры различными методами на эталонном уровне точности. Подробный анализ эталонных методов термометрии, их возможностей, поправок, ограничений, источников погрешностей, способных оказать существенное влияние на результаты измерений в очень многих промышленных ситуациях, обладает большой общностью. Это делает книгу Т. Куинна весьма полезной для широкого круга инженеров и научных работников, имеющих дело с технической термометрией.  [c.5]

В соответствии с этим возникли две температурные шкалы— Международная практическая и термодинамическая. Международная практическая температурная шкала (МПТШ) воспроизводится с помощью 6 постоянных точек кипения кислорода, тройной точки воды, кипения воды, кипения серы, затвердевания серебра и затвердевания золота. Достоинством МПТШ является сравнительная простота экспериментов для ее воспроизведения. Однако она является лишь приближением к термодинамической шкале, и по мере совершенствования методики измерений термодинамической температуры значения постоянных точек уточняются, т. е. МПТШ не является чем-то постоянным и окончательно установленным. Поэтому в качестве основной единицы СИ выбрана единица термодинамической температуры 7, хотя ее воспроизведение сопряжено с большими экспериментальными трудностями.  [c.29]

В соответствии с этим возникли две температурные шкалы — Международная практическая и термодинамическая. Международная практическая температурная шкала (МПТШ) воспроизводится с помощью ряда постоянных точек кипения кислорода (—182,96°С), тройной точки воды ( + 0,01°С — в этой точке одновременно существуют и находятся в температурном равновесии все три фазы — твердая в виде льда, жидкая и газообразная в виде водяного пара), кипения воды (100°С), затвердевания цинка (419,58°С), затвердевания серебра (961,93°С) и затвердевания золота (1064,43°С).  [c.9]

Новое определение термодинамической температурной шкалы нашло отражение в Положении о MПTLQ-48. Редакция 1960 г. , принятом одиннадцатой Генеральной конференцией по мерам и весам. Этой шкалой предусматривается применение двух температурных шкал термодинамической температурной шкалы и практической температурной шкалы. Температура по каждой из этих шкал может быть выражена двояким способом в градусах Кельвина (К) и в градусах Цельсия (°С) в зависимости от начала отсчета (положения нуля) по шкале.  [c.60]

В книге обобщены опыт работы ведущих термометрических лабораторий на протяжении последних двух десятилетий, позволивший создать Международную практическую температурную шкалу 1968 г., являвшуюся в момент ее установления наилучшим приближением к термодинамической температурной шкале, а также результаты последних исследований, выявивших недостатки и неточности МПТШ-68 и подготовивших основы для ее замены в недалеком будущем.  [c.5]

Достигнуть соглашения о шкале по давлению паров Не оказалось значительно труднее, чем можно было ожидать. Эти трудности типичны для построения любой новой практической температурной шкалы. Главным здесь является вопрос обоснования формулы для температурной зависимости, которая может быть или строго выведенной термодинамической формулой или эмпирическим соотношением, хорошо опи-сываюшим экспериментальные данные. Идеальным был бы первый подход, однако, если термодинамическое соотношение содержит много констант, которые трудно оценить и численные значения которых ненадежны, все преимущества описания экспериментальных данных термодинамической формулой теряются. С другой стороны, чисто эмпирическое соотношение для описания результатов может не обнаружить термодинамического несоответствия между частями шкалы и ошибок в измерениях. В начале 50-х годов оценки точности термодинамического способа вычисления температурной зависимости давления паров Не были примерно такими же, как и для чисто эмпирического описания имевшихся экспериментальных данных. Эти оценки были разными в зависимости от давления паров и служили предметом дискуссий [38]. В качестве компромиссного решения была разработана таблица температурной зависимости давления насыщенных паров и никакого уравнения не предлагалось. Эта таблица была представлена ККТ в 1958 г. одновременно сторонниками обоих способов вычисления температурной зависимости. Дискуссия была весьма острой, и ее участники нередко меняли свое мнение на противоположное Принятая в 1958 г. ГКМВ таблица получила название шкалы Не-1958 с обозначением температуры по этой шкале и перекрывала интервал от 0,5 до  [c.69]

Международная практическая температурная шкала 1968 г. (МПТШ-(58) установлена таким образом, чтобы температура, измеряемая по ней, была возможно близкой к термодинамической температуре. Измерения в этой шкале могут быть выполнены достаточно легко и с высокой воспроизводимостью, в то время как прямые измерения термодинамической температуры весьма трудоемки и недостаточно точны.  [c.412]


Все большее число работ свидетельствует о том, что шкалы по давлению паров гелия [1, 2] и низкотемпературная часть Международной практической температурной шкалы 1968 г. (МПТШ-68) существенно отклоняются от термодинамической температуры и, кроме того, не соответствуют друг другу. Эти недостатки действующих практических температурных шкал стали очевидными и были изучены Консультативным комитетом по термометрии (ККТ). В результате в 1976 г. ККТ предложил Международному комитету по мерам и весам (МКМВ) рекомендовать к использованию в международном масштабе новую Предварительную температурную шкалу от 0,5 до 30 К до тех пор, пока не будет принята новая Международная практическая температурная шкала [4]. МКМВ поручил ККТ опубликовать Предварительную температурную шкалу 1976 г. от  [c.437]

Измерение те.мпературы но термодинамической шкале связано с осуществлением цикла Карио и измерением количеств теплоты, нолучаемы.х телом от нагревателя и отдаваемых охладителю. Измерение температуры, таким образом, являлось бы затруднительным. В связи с этим для практических целей на основе термодинамичесгсой шкалы установлена Международная практическая температурная шкала (см. Приложение 4).  [c.91]

Определение температуры путем осуществления прямого обратимого цикла Карно с измерением подводимой и отводимой теплоты оказалось бы сложным и затруднительным. Поэтому для практических целей на основе термодинамической шкалы установлена Международная практическая температурная шкала (МПТШ).  [c.172]

Как уже отмечалось, уточнение практических температурных шкал ведется постоянно, чтобы приблизить практическую шкалу к истинной термодинамической. Анализируя различные экспериментальные данные, полученные в разное время, необходимо знать, какими температурными шкалами пользов ались исследователи. Если обнаружится, что в работах использовались разные шкалы (например, МПТШ—48 и МПТШ—68), необходимо ввести коррекдию температуры в более ранних работах.  [c.77]

Для измерения температуры решением Международного комитета мер и весов приняты две и1калы термодинамическая температурная шкала, которая признана основной, и Международная практическая температурная шкала 1968 г. (МПТШ-68), выбранная таким образом, чтобы температура, измеренная по этой шк е, была близка к термодинамической температуре. Для каждой из этих шкал приняты две единицы температуры Кельвин (К) и градус Цельсия (°С). Температура, выражаемая в кельвинах, обозначается символом Т, температура в градусах Цельсия —Л Кельвину и градусу Цельсия отвечает один и тот же интервал температур, т. е.  [c.17]

Единицами измерения температуры в термодинамической шкале являются градус Кельвина К и градус Цельсия термодинамический °С (терм.) в Международной практической температурной шкале — градус Цельсия международный °С (ыежд. 1948) и градус Кельвина международный °К (межд. 1948).  [c.11]

Экспериментальные трудности, присущие измерениям термодинамической температуры, привели к принятию международной температурной шкалы. Международная практическая температурная шкала (МПТШ-68) основана на определенных воспроизводимых реперных точках (т. е. легко реализуемых состояний того или иного вещества, температура которых точно известна) и построена таким образом, что разница между термодинамической шкалой и МПТШ-68 меньше погрешности современных средств измерения температуры. (П р и-м е ч. р е д.)  [c.47]


Смотреть страницы где упоминается термин Термодинамическая и практические температурные шкалы : [c.10]   
Смотреть главы в:

Температура  -> Термодинамическая и практические температурные шкалы



ПОИСК



Современное определение абсолютной термодинамической температурной шкалы и соотношение этой шкалы с Международной практической температурной шкалой

Таблица 9. Единицы термодинамической и Международной практической температурных шкал

Температурная шкала

Температурная шкала практическая

Температурная шкала термодинамическая

Температурные шкалы-г-см. Шкалы

Температурные шкалы-г-см. Шкалы температурные

Термодинамическая температурная

Шкала термодинамическая

Шкалы



© 2025 Mash-xxl.info Реклама на сайте