Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая шкала—см. Шкала температур

В результате можно сделать вывод, что теплоемкость газа ван-дер-Ваальса при постоянном объеме с , так же как и для идеального газа, есть функция только температуры. Величина же для реального газа зависит не только от температуры, но и от давления. Независимость j, от плотности с физической точки зрения объясняет совпадение шкалы газового термометра, термометрическим веществом которой является газ ван-дер-Ваальса, с абсолютной термодинамической шкалой (см. 8).  [c.79]


Выше рассмотрено построение термодинамической шкалы температур с основными температурами 0° (точка плавления льда) и 100° (точка кипения воды), интервал между которыми, по определению, принят равным точно ста градусам (шкала Цельсия). Для осуществления перехода от температуры, выраженной в стоградусной шкале (уравнение (21)), к абсолютной температуре достаточно перенести начало отсчета на число градусов, равное температуре нуля Цельсия в абсолютной шкале (0о в уравнении (20)). Эта температура по наиболее точным измерениям составляет 273,15° К (о способе установления этой величины см. 11 настоящей главы).  [c.33]

Наиболее универсальной шкалой температур, не зависящей от каких-либо свойств термометрического вещества, является абсолютная термодинамическая шкала температур Т — шкала Кельвина, построенная на основе второго закона термодинамики (см. п. 6.2) и  [c.13]

Отсюда видно, что если 0 = О, то и 7 = 0. Это значит, что функции 0 и Г имеют одно начало отсчета. А так как при определении величины градуса в термодинамической шкале температур можно выбрать любое произвольное число по нашему усмотрению (см. 8), то для этих двух температурных шкал всегда можно найти одинаковую единицу — один и тот же градус. Тогда неизбежно 0 = Г.  [c.69]

Международная стоградусная температурная шкала, принятая генеральной конференцией по мерам и весам в 1948 г. и узаконенная в СССР стандартом ГОСТ 18550-61, является практическим осуществлением абсолютной термодинамической стоградусной температурной шкалы, имеющей единственную, воспроизводимую с большой точностью, опорную точку, расположенную на 0,01 градуса выше температуры плавления льда при нормальном атмосферном давлении — температуру воды в так называемой тройной точке (см. ниже 4-3). Абсолютной температуре в этой точке присвоено точное значение Т — = 273,16 градуса.  [c.10]

До 1954 г. стоградусная термодинамическая шкала (шкала Цельсия) и абсолютная термодинамическая шкала (шкала Кельвина) по Положению, принятому международным соглашением, строились именно таким образом. Однако в 1954 г. X Генеральная конференция по мерам и весам приняла решение, согласно которому построение абсолютной и стоградусной термодинамической шкалы должно производиться иным методом. В отличие от рассмотренного выше метода, основным температурным интервалом при построении абсолютной шкалы является теперь не интервал между точкой плавления льда и точкой кипения водЫ а интервал между абсолютным нулем температур и тройной точкой воды. Шкала Цельсия по-прежнему получается при сдвиге нулевой точки на 273,15°, Следует заметить, что введенные изменения касаются скорее принципа построения шкалы и способа определения градуса. Значения термодинамических температур при этом почти не изменяются (некоторое изменение возможно, но оно настолько мало, что в настоящее время не может быть надежно установлено). Подробнее об этом см. 11.  [c.33]


Поправка на отклонение свойств термометрического вещества от свойств идеального газа. Значения коэффициентов а , а р и температур 1р, Т , Т и Тр, вычисленные приведенными выше методами, зависят от свойств термометрического газа и от величины давления в точке плавления льда. Для введения поправки на неидеальность газа с целью вычисления термометрического коэффициента идеального газа а=1/7 о, термодинамической температуры по стоградусной шкале / и соответствующей температуры по шкале Кельвина Т находят пределы, к которым стремятся величины коэффициентов и температур, когда давление в точке плавления льда стремится к нулю см. формулы (59) — (63)]. По этому вопросу имеется обширная литература (см. [14]).  [c.71]

Температура по обеим шкалам (термодинамической и международной практической) может быть выражена в градусах Кельвина (°К) и в градусах Цельсия (°С) в зависимости от начала отсчета (положения нуля) по шкале (см. главу 10). Символ обозначения абсолютной температуры Т, а стоградусной—г Г = + 273,15.  [c.27]

ГОСТ 8550-61 предусматривает использование двух следуюп их шкал температур практической международной шкалы 1948 г. (шкалы Цельсия) и абсолютной термодинамической шкалы Кельвина (см. стр. 27).  [c.131]

Это соотношение может быть положено в основу сравнения температур двух тел. Если эти тела выбраны в качестве нагревателя и холодильника в обратимом цикле Карно, то, измерив Ql и Qa. можно определить отношение Ti/Ta. Так устанавливается теоретически термодинамическая шкала температур. В соответствии с теоремой Карно (пп. 3°—5°) эта шкала не связана со свойствами термометрического тела (см. также 11.3.1.7°).  [c.148]

Тройная точка для каждого вещества характеризуется определенной парой значений давления и температуры аналогично критической точке. Поэтому в настоящее время термодинамическая шкала температур устанавливается с помощью абсолютного нуля 0°К и с. помощью тройной точки, температура которой принимается равной 273,16° К (см. стр. 7). Международная температурная шкала, напротив, еще сегодня опирается на точку плавления льда 273,15° К и точку кипения воды 373,15° К.  [c.150]

Из вычисленных значений А (см. табл. 1, п. 1) были получены значения термодинамических температур для каждой из пяти изотерм, которые были сопоставлены с температурами, полученными по давлению насыщенных паров (по шкале 1948 г.). Разности T s — Т, вычисленные для каждой из пяти изотерм, приведены в табл. 1, а также на фиг. 1. Точки, соединенные ломаной линией, соответствуют средним значениям разностей температур, измеренных Эриксоном и Робертсом [3] методами магнитной термометрии. На ломаную линию (фиг. 1) попадает также точка, полученная из изотермы для Не при температуре 2,160° К-  [c.226]

Измерение изменения температуры в результате теплообмена является важнейшей задачей калориметрии. Методы измерения температуры основаны на регистрации эффектов ее проявления, например путем определения изменения объема, сопротивления, спектрального диапазона излучения света, контактной разности потенциалов металлов. При всех этих измерениях принципиальное значение имеет решение вопроса о нулевой точке отсчета температуры и температурной шкале. Абсолютная термодинамическая температурная шкала (шкала Кельвина) тождественна шкале газового термометра (см. ниже), в котором термометрическое вещество - газ подчиняется законам идеальных газов. Однако измерение температуры по этой шкале сопряжено со значительными экспериментальными трудностями. Применяемые в настоящее время приборы для измерения температуры проградуированы в единицах Международной практической температурной шкалы.  [c.19]

АБСОЛЮТНЫЙ НУЛЬ ТЕМПЕРАТУРЫ, начало отсчёта термодинамич. темп-ры расположен на 273,16 К ниже темп-ры тройной точки (0,01°С) воды (на 273, 15°С ниже нуля темп-ры по шкале Цельсия, см. Температурные шкалы). Существование термодинамической температурной шкалы и А. я. т. следует из второго начала термодинамики. С приближением темп-ры к А. н. т. стремятся к нулю тепловые хар-ки в-ва энтропия, теплоёмкость, коэфф. теплового расширения и др. По представлениям клас-сич. физики, при А. н. т. энергия теплового (хаотич.) движения молекул и атомов в-ва равна нулю. Согласно же квант, механике, при А.н.т. атомы и молекулы, расположенные в  [c.7]


Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

Термодинамическая шкала температур определяет температуру как измеряемую физическую величину и устанавливает ее единицу, которая на XIII Генеральной конференции по мерам и весам (1967 г.) была принята в качестве основной единицы (см. 1.6).  [c.192]

Новое определение абсолютной термодинамической шкалы не требует экспериментального определения температуры Т о. Положение абсолютного нуля температур устанавливается не экспериментально, а по определению, поскольку единственной реперной точке — тройной точке воды — приписано точное значение 273,16°К. Нуль термодинамической шкалы Цельсия при этом определяется как температура, лежащая точно на 0,01 град ниже температуры тройной точки водьь Таким образом, термодинамическая шкала Цельсия, как и ранее, связана с абсолютной термодинамической шкалой формулой (см. 7 настоящей главы)  [c.52]

Применение отдельного вторичного термометра в области температур ниже 1° К невозможно, поскольку при низких температурах тепловое равновесие достигается с большим трудом (см. п. 2). Задача решается крайне просто, если использовать завпсящее от температуры свойство самой соли (в этом случае сама соль является вторичным термометром) такое свойство мы будем называть термометрическим параметром . Однако в этом случае возникает необходимость повторять калибровку параметра в соответствии термодинамической шкалой температур не только для каждой повой исследуемой соли, но такн е и для различных образцов одпон и той же соли, ибо получаемые на нпх результаты не всегда являются идентичными. Иногда даже данные, полученные па одном и том же образце соли в различных гелиевых экспериментах, несколько отличаются друг от друга.  [c.439]

Измерение те.мпературы но термодинамической шкале связано с осуществлением цикла Карио и измерением количеств теплоты, нолучаемы.х телом от нагревателя и отдаваемых охладителю. Измерение температуры, таким образом, являлось бы затруднительным. В связи с этим для практических целей на основе термодинамичесгсой шкалы установлена Международная практическая температурная шкала (см. Приложение 4).  [c.91]

Между тем это доказательство иллюзорно. На самом деле независимость ц от у — это, как мы отмечали в гл. 2, самостоятельное, особое свойство идеального газа, никак не связанное с другим его свойством — тем, что идеальный газ подчиняется уравнению Клапейрона. В гл. 3 независимость внутренней энергии идеального газа от объема была использована для доказательства идентичности температурной шкалы идеального газа и абсолютной термодинамической шкалы Кельвина. Именно доказанность этой идентичности позволяет нам использовать уравнение Клапейрона в любых термодинамических расчетах. Таким образом, то обстоятельство, что (duldv) i =0, уже заложено в уравнение Клапейрона при произведенной в этом Уравнении замене идеально-газовой температуры абсолютной термодинамической температурой (см. 3-5), и, следовательно, приведенное выше доказательство лишь еще раз фиксирует этот заранее известный факт.  [c.114]

Обратимся к формуле Деринга — Фольмера (2.34) где имеет вид (2.2). Если учесть выражение (2.15) для разности давлений р" — р внутри критического пузырька и вне его, то для расчета частоты нуклеации /1 нри заданных температуре Т и давлении р нужно в первую очередь знать поверхностное натяжение на границе пузырька с жидкостью, давление насыщенного пара Ре, удельные объемы р, и", теплоту испарения I на одну молекулу. Кроме того, в предэкспоненциальный множитель входит число молекул в 1 сж жидкости N1 и масса молекулы т. Для 0, рв, V, V" берутся значения по таблицам термодинамических свойств [122, 123] на линии насыщения при заданной температуре. Так же находятся I и N1- При выбранном внешнем давлении р нетрудно рассчитать по (2.34) температурную зависимость Получается одна из кривых, показанных на рис. 8, б. Ввиду очень сильной температурной зависимости удобно пользоваться полулогарифмической шкалой. Меняя давление р = р, как параметр, приходим к серии кривых lg Jx [Т) (1—4 на рис. 8, б). Обычно сравнение экспериментальных данных с теорией производится не для частоты нуклеации а для температуры Гц, которая соответствует реализуемой в опыте частоте Например, при перегреве всплывающих капелек lg 6. По теории гомогенной нуклеации строится небольшой участок кривой lg Jl (Т) и из условия lg = 6 определяется теоретическое значение Гц. Для проверки теории нужно изменять в широком интервале давлепие, под которым находится жидкость, а также эффективную частоту зародышеобразования. Перекрыть большой диапазон удается благодаря применению разных методов перегрева жидкостей. Для маленькой пузырьковой камеры /1 1 10—10 см -сек , для капелек 10 см -сек , а в методе импульсного нагрева жидкости имеем = 10 — 10 слГ -сек . Это позволяет судить о применимости теории как при низких, так и при очень высоких частотах спонтанного зародышеобразования. Безразмерную величину  [c.129]


Шкала Кельвина. В 1948 г. на заседании Консультативного комитета по термометрии обсуждался также вопрос относительно определения абсолютной термодинамической шкалы (шкалы Кельвина) [17]. В 1854 г. Кельвин указал (см. [18]), что для определения абсолютной шкалы необходима только одна реперная точка и что когда интервал между абсолютным нулем и точкой плавления льда станет достаточно хорошо воспроизводимым, абсолютную шкалу можно будет определить с помощью этой реперной точки. Кельвин предполагал, что точности в 0,1° будет достаточно в этом интервале температур. Спустя 20 лет Менделеев (см. [19]) предложил принять шкалу, определенную таким же способом, но с интервалом между абсолютным нулем и точкой плавления льда, разделенным на 1000 частей. В 1939 г. Комитет по шкалам низких температур Национального исследовательского совета США внес в Консультативный комитет по термометрии выдвинутое Джиоком [21] предложение приписать тройной точке воды по термодинамической шкале некоторое постоянное числовое значение и определить шкалу с помощью этой одной точки [20].  [c.23]

Система главного газового термометра. Для осуществления термодинамической шкалы от точки плавления льда до точки кипения серы использовался резервуар В объемом около 1000 мл из прозрачного плавленого кварца, заполненный азотом. Резервуар присоединялся с помощью переходного спая к капилляру А из пирексового стекла с отверстием диаметром 0,75 мм и длиной 45 см. К верхнему концу капилляра А присоединялся капилляр О из нержавеющей стали с внутренним диаметром 0,6 мм. Этот капилляр был соединен с Т-образным вентилем Р, предназначенным для откачки системы и заполнения ее чистым азотом, а от вентиля Р он вел к короткому колену О главного манометра Я. Для изготовления обоих колен Си/ манометра были использованы трубки из пирексового стекла с внутренним диаметром 21 мм короткое колено имело длину 10 см, длинное колено— 1,7 м. Для изготовления манометра были отобраны прямолинейные трубки с одинаковым по длине диаметром и без оптических неоднородностей эти трубки были установлены так, чтобы их оси лежали на одной прямой. Колена Си/ манометра, резервуар с ртутью Ь и устройство I (служащее для точной установки уровня ртути в манометре) были смонтированы на стальной станине различные части системы разделялись стальными кранами. Манометр был заключен в алюминиевый кожух, помещенный в термостате К, в котором циркулировал воздух и регулировалась температура. Помещение, где находился манометр, термостатировалось.  [c.52]

Согласно нулевому началу термодинамики, каждому равновесному состоянию термодинамической системы соответствует определенное значение температуры (см. пример 2.1). Численное значение эмпирической температуры зависит не только от состояния термодинамической системы, но и от свойств термометрического вещества. Если, например, использовать для получения эмпирической шкалы две реперных точки (франц. repere — метка, исходная точка), соответствующих состоянию таяния льда н состоянию кипения воды, разбив промежуток между ними на 100 равных частей, то некоторому промежуточному состоянию 1 будут соответствовать различные числовые значения эмпирических температур-  [c.83]

Как мы видели в разд. 11.4, принципиальную возможность определения термодинамической температуры Т любого теплового резервуара в общем случае дает полностью обратимая ЦТЭУ, работающая между рассматриваемым и опорным резервуаром, находящимся при Та — 273,16 К. Для этого необходимо рассчитать величину Т по уравнению (11.2), воспользовавщись измеренными значениями Qt и Qd. Однако, поскольку полностью обратимая ЦТЭУ представляет собой некоторую термотопическую установку и не может быть реализована, единственной точно известной температурой является тройная точка воды, использованная для определения кельвина. Следовательно, для выражения в кельвинах любой другой температуры можно получить лишь некоторую наилучшую оценку (это делается путем одновременного использования теории и эксперимента, см. гл. 18). По этой причине в практических целях необходимо установить некоторую практическую температурную шкалу, в которой, по международному соглашению, целому ряду точно воспроизводимых температур приписывается определенное число кельвин (такие температуры называются фиксированными точками). При этом должны быть определены также методы интерполяции, позволяющие находить промежуточные значения температуры. Для численного выражения температуры в заданной фиксированной точке используется то значение, которое по международному соглашению считается наилучшей оценкой истинной термодинамической температуры на данный период. Последнее такое соглашение, достигнутое в 1968 г., заменило соглашения от 1948/1960 гг. Улучшенное издание шкалы 1968 г. было выпущено в 1975 г., однако при этом были сделаны лишь незначительные уточнения, которые не привели к изменениям температур, измеренных по шкале 1968 г.  [c.156]

XI Генеральная конференции по мерам и весам (1960 г.) приняла (см. приложение в работе [1]) в качестве основной Международную термодинамическую температурную шкалу (Кельвина) с обозначением температуры Т и единицы измерения °К (градус Кельвина). Эта шкала базируется на законах термодинамики идеального газа и использует в качестве основной температуру тройной точки воды, которой присвоено значение 273,16°К. Термин основнаи шкала означает.  [c.91]

Значения динамической вязкости ц воды и водяного пара в состояниях насыщения приводятся в табл. VI, а для однофазных состояний — в табл. VII. Они получены по уравнению 1АР8—85 [5], скорректированному для температурной шкалы МТШ—90 (см. параграф 1.2). При этом значения плотности, являющейся аргументом уравнения, для заданных температуры и давления определялись по уравнениям Формуляции 1Р—97. Область однофазных состояний табл. VII соответствует указанной выше области таблиц термодинамических свойств.  [c.13]

Температурой называется величи-, характеризующая степень нагретости тела. В СССР введена с 1 октября 1934 г. международная температурная шкала, являющаяся практическим осуществлением термодинамической стоградусной шкалы, основанная на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения (см. ТСЖ, т. 1, раздел Единицы измерения ).  [c.719]

Международная практическая температурная шкала 1968 г. выбрана таким образом, чтобы температура в этой шкале была близка к термодинамической температуре. МПТШ-68 основана на значениях температур, присвоенных определенному числу воспроизводимых состояний равновесия (определяющих постоянных точек, см. табл. 1), и на специаль-  [c.445]


Смотреть страницы где упоминается термин Термодинамическая шкала—см. Шкала температур : [c.430]    [c.60]    [c.276]    [c.56]    [c.246]    [c.80]    [c.64]    [c.10]    [c.254]   
Температура и её измерение (1960) -- [ c.0 ]



ПОИСК



Абсолютная термодинамическая температура шкала температур

Г-лава двадцать первая. Термодинамическая температура и международv ная шкала температуры

Единица термодинамической температуры — кельвин. Температурные шкалы

Положение точек кипения серы и ртути на термодинамической шкале температур (перевод Беликовой Т. П. и Боровика-Романова

Температура абсолютная по термодинамической шкале

Температура термодинамическая

Термодинамическая логарифмическая шкала температур

Термодинамическая стоградусная шкала температур

Термодинамические свойства Не Фомичев, Пе Б. Кантор, В. В. Кандыба Новые исследования температуры плавления корунда как вторичной реперной точки шкалы температур

Термодинамический к. п. д. цикла Карно. Понятие об абсолютной термодинамической шкале температур

Цикл Карно и термодинамическая температура (НО). Шкала Кельвина

Цикл Карно с произвольным рабочим теТемпературная шкала идеального газа как термодинамическая шкала температур

Шкала температур

Шкала температур абсолютная термодинамическая (Кельвина)

Шкала температур абсолютная термодинамическая (Кельвина) воспроизводимость

Шкала температур абсолютная термодинамическая (Кельвина) границы

Шкала температур абсолютная термодинамическая (Кельвина) исторический обзор

Шкала температур абсолютная термодинамическая (Кельвина) международная

Шкала температур абсолютная термодинамическая (Кельвина) нижний предел

Шкала температур абсолютная термодинамическая (Кельвина) области

Шкала температур абсолютная термодинамическая (Кельвина) платинового термометра сопротивления

Шкала температур абсолютная термодинамическая (Кельвина) положение

Шкала температур абсолютная термодинамическая (Кельвина) практическая

Шкала температур абсолютная термодинамическая (Кельвина) практическое осуществление

Шкала температур абсолютная термодинамическая (Кельвина) стандартная термометрическая

Шкала температур абсолютная термодинамическая (Кельвина) экстраполяция

Шкала температур абсолютная термодинамическая поддержание

Шкала температур абсолютная термодинамическая сравнение с другими шкалами

Шкала температур абсолютная термодинамическая усовершенствование

Шкала температур термодинамическая

Шкала температур термодинамическая

Шкала термодинамическая

Шкалы



© 2025 Mash-xxl.info Реклама на сайте