Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реактивные двигательные системы

Реактивные двигательные системы, 23 Реакции деления атомного ядра, 69 Регенеративное охлаждение, 442— 447  [c.788]

F 02 <В — Двигатели внутреннего сгорания (поршневые, вообще) С — Газотурбинные установки, воздухозаборники реактивных двигательных установок, управление подачей топлива в воздушно-реактивных двигательных установках D — Управление или регулирование двигателей внутреннего сгорания F — Цилиндры, поршни, корпуса или кожухи цилиндров, устройство уплотнений в двигателях внутреннего сгорания G — Силовые установки и двигатели объемного вытеснения, работающие на горячих газах или продуктах сгорания, использование отходящей теплоты двигателей с нагревом рабочего тела путем сгорания К—Реактивные двигательные установки М—Системы подачи топлива или горючей смеси для двигателей внутреннего сгорания и составные части этих систем N — Пуск двигателей внутреннего сгорания, вспомогательные средства для пуска двигателей Р—Зажигание в двигателях внутреннего сгорания, работающих без самовоспламенения от сжатия, проверка момента зажигания в двигателях с самовоспламенением от сжатия)  [c.38]


Для управления скоростью вращения КА широкое применение нашли реактивные двигательные установки, представляющие собой системы с одним или несколькими реактивными двигателями малой тяги, объединенные общей системой подачи топлива. Работа таких двигательных установок во многом определяется длительностью активного существования КА, многократными включениями в условиях орбитального вакуума и невесомости, а также ограничением габаритов и веса. Последнее и определяет главный недостаток реактивных двигательных систем, который заключается в постоянном расходовании рабочего тела, запасы которого в полете невосполнимы. Другим недостатком реактивных двигателей является отсутствие возможности регулирования тяги. Поэтому независимо от требований управляющих устройств двигатели при включении развивают одну и ту же тягу и один и тот же управляющий момент.  [c.132]

Импульсные перелеты. Влияние веса двигательной системы несуш,ественно для маневров, при выполнении которых время работы двигателя много меньше времени выполнения маневра. Для таких маневров приложение реактивной тяги можно рассматривать как импульсное.  [c.274]

Часто двигательные системы характеризуют их удельным весом, под которым понимают отношение веса двигательной системы к величине создаваемой ею тяги. Чем выше удельный вес двигателя, тем меньше создаваемое им реактивное ускорение, тем менее он выгоден. В дальнейшем мы будем характеризовать двигательные системы главным образом реактивными ускорениями.  [c.27]

Двигательные системы, в которых используется реактивный принцип движения, часто делят на два класса  [c.23]

Вторая часть книги, посвященная конструкциям и двигательным системам ракет, носит более технический характер. Достоинством этой части книги является то, что здесь рассмотрены различные принципы создания реактивной тяги и возможные пути их технического осуществления. Хотя при современных стремительных темпах развития ракетной техники некоторые из приведенных материалов и могут оказаться уста- ревшими, намеченные технические и конструктивные решения все же отражают общее направление развития ракетного двигателестроения. Известное внимание уделяется также основам прочностного расчета и принципам оптимального конструирования ракет. Наконец, в последней, третьей  [c.8]

В качестве примеров двигательных установок стабилизации и управления положением на орбите приведены реактивная система управления (РСУ) корабля Спейс Шаттл , двигательный блок многоцелевого модульного аппарата второго поколения Марк II , тормозная ДУ космического аппарата Галилей , объединенная двигательная установка спутника Олимпия и, наконец, РСУ для спутника, работающая на продуктах разложения однокомпонентного топлива.  [c.243]


Соответственно продлена специальная колея, по которой передвигалась мобильная башня обслуживания. Существовавший газоход для отвода истекающих струй газов трех жидкостных реактивных двигателей основной двигательной установки орбитального самолета был продлен под землей до новой стартовой позиции. Для отвода истекающих струй твердотопливных блоков первой ступени системы Шаттл было создано два новых газохода. Среди новых сооружений стартового комплекса были смонтированы емкости для жидкого водорода и кислорода, вспомогательная башня на новой стартовой позиции, мобильное здание для проверки полезного груза.  [c.86]

К двигателям ограниченной мош,ности (пп. 3.1—3.3) относятся системы, состояш,ие из источника мош ности и реактивного движителя, пре-враш аюш его выработанную источником энергию в кинетическую энергию направленного движения реактивной струи. Наличие отдельного источника ограниченной мош ности определяет основные свойства и название рассматриваемой категории двигательных систем. Регулировочная характеристика (1.4) и весовая формула (1.5) для двигателя ограниченной скорости выглядит так  [c.268]

За последние годы появился большой интерес к системам управления газовыми рулями ракетных двигателей, камерой сгорания реактивных двигателей и другим управляющим механизмам, работающим в условиях высокого нагрева от бортовых двигательных установок. В настоящее время для выполнения этой задачи предполагается использовать гидравлические приводы, однако простые системы управления на горячем газе обладают рядом определенных преимуществ.  [c.506]

Критерием оптимальности для тех двигательных систем малой тяги, которые можно отнести к системам ограниченной мои ности (см. 10 гл. 1), является величина, которую получают следующим образом. Допустим, что реактивное ускорение, будучи переменным, сохраняет на небольшом интервале времени (например, в течение секунды) постоянное по величине значение. Умножив квадрат реактивного ускорения на этот интервал времени и взяв сумму всех этих произведений за время полета, мы и получим величину, которая будет характеризовать затраты рабочего тела на весь космический полет ). Измеряется эта величина в единицах м с  [c.79]

В случае систем прямой реакции изменение количества движения достигается непосредственно за счет термодинамических процессов (турбореактивные, прямоточные, пульсирующие реактивные двигатели). В случае систем непрямой реакции изменение количества движения достигается с помощью двигателя и воздушного винта. В некоторых двигательных установках сочетаются прямая реакция (реактивная струя) и непрямая реакция (воздушный винт). Примером служит турбовинтовой двигатель. Правда, доля тяги, получаемой за счет непрямой реакции, в данном случае является преобладающей (более 90%) и более правильно относить такой двигатель к системам непрямой реакции. То же самое можно сказать и о поршневых двигателях, вращающих воздушный винт и снабженных выхлопным соплом, создающим тягу.  [c.23]

Воздух [очистка <в помещении В 03 С 3/32 в самолетах В 64 D 13/00) регулирование потоков воздуха F 24 F 13/08 сжатый, использование для уплотнения формовочных смесей В 22 С 15/22-15/26 увлажнение F 24 F 3/14, 6/00 удаление из сосудов В 65 D 51/16 циркуляция в холодильных установках F 25 D 17/00-17/08] Воздуходувные устройства [для ДВС F 01 Р 5/02 для дымоходов F 23 J 3/00 в пескоструйных машинах В 24 С 5/02-5/04 В 65 Н для подачи (изделий к машинам (станкам) 5/22 нитевидного материала 51/16) для разделения изделий, уложенных в стопки 3/14, 3/48 для транспортирования изделий от машин к стопкам 29/24) в системах подачи воздуха в топку F 23 L 5/02] Воздухозаборники [F 02 С <для газотурбинных или реактивных двигательных установок 7/04-IjOSl реактивных двигателей , летательных аппаратов В 64 D 33/02 В 60 систем вентиляции Н 1/30 К 11/08, 13/02) транспортных средств, судов В 63 J 2/10]  [c.58]


Двигательные системы разбиваются на три большие категорииг в зависимости от главного ограничения на регулировочную характеристику (1.4), обусловленного природой физических процессов в двигателе. Главное ограничение с точки зрения механики полета характеризуется тем, что оптимальный режим работы двигателя, как правило, соответствует выходу на это ограничение. Такими ограничениями являются ограничение скорости истечения реактивной струи, ограничение мош,-ности и ограничение тяги двигательной системы.  [c.268]

Общая вариационная проблема. Рассмотрение вариационной задачи механики полета (1.1) с двигателями ограниченной скорости истечения реактивной струи (1.6) показало, что с учетом влияния удельного веса / двигательной системы у = и удельного веса конструкции = Ср/Сцо полная вариационная проблема разделяется на динамическую и весовую (Г. Л. Гродзовский, 1966—1967). Динамическая (траек-торная) проблема сводится к известной задаче ракетодинамики оптимального движения с идеальным невесомым двигателем ограниченной тяги, определяющей максимально достижимый конечный вес аппарата  [c.273]

Pliqa S) (рис. 5.3.19) показывают, что наи-Удтах обеспечивает схема III с реактивным закрылком. Согласно весовым расчетам, у летательного аппарата с силовой установкой по схеме I наилучшие весовые характеристики и наименьшая потребная тяговооруженность. Применение схемы III приводит к увеличению веса, но снижает потребную тягу. Такое различие между рассматриваемыми схемами объясняется взаимным аэродинамическим влиянием различных элементов аппарата, веса крыла, средств его механизации, а также маршевой силовой установки. Ввиду высоких силовых нагрузок и температур в схеме I вес крыла, приходящийся на единицу его площади, повышенный. Крыло с реактивным закрылком (схема III) имеет больший вес, чем крыло с системой управления пограничным слоем. Утяжеление крыла (схема I) компенсируется снижением веса маршевых двигательных установок, и, наоборот, увеличение их веса в схемах II и III компенсируется снижением веса крыла.  [c.382]

Сопла [горелок F 23 D (для газообразного 14/(18-58) для жидкого 11/38) топлива динамика текучих сред в соплах F 15 D 1/08 изготовлепие и закрепление в металлических сосудах В 21 D 51/42 отсечные клапаны для сопел F 16 К 5/04 в пескоструйных машинах В 24 С 3/(12, 22, 28) F 02 (для ракетных двигательных установок К 9/97 топливных форсунок М 61/18 с устройствалт для реверса тяги в реактивных двигателях К 1/54-1/76, 9/92 распыляющие (общие вопросы В 05 В 1/00 для оросительных холодильников F 28 F 25/06 в парогенераторах F 22 В 27/16) реактивные (расположение на самолетах и т. п. В 64 D 33/04 F 02 К (реактивные двигатели, отличающиеся по форме или расположению сопел, 1/00-1/82 регулируемые для управления положением самолетов и т. п. в воздухе 1/10, В 64 С 15/00)) свободноструйных гидротурбин F 03 В 1 04 в смесшпел.чх-распылителях В 01 F 5/20 струйных насосов F 04 F 5/46 турбин (F 01 D 9/02 электроэрозионная обработка В 23 FI 9/10)] Сопротивление акустическое, измерение С 01 Н 15/00 Сорбенты, составы В 01 J 20/(00-34) Сорбционные холодильные машины, установки и системы F 25 В (непрерывного 15/16 периодического 17/(00-10)) действия Сортировка [материала после дробления или измельчения В 02 С 23/(08-16) снарядов или патронов F 42 В 35 02 твердых материалов В 07 В (100-  [c.180]

Строительные площадки, используемые для подъемных кранов особого назначения В 66 С 23/(26-34) элементы из пластических материалов В 29 L 31 10) Строны парашютов В 64 D 17/(24-28) подъемных кранов В 66 С 1/12-1/20 в устройствах для перемещения грузов В 65 G 7/12 в шлюпочных устройствах В 63 В 23/22 ) Струбцины (В 25 В 5/00-5/16 для лесопильных станков и т. п. В 27 В 3/38) Стружка [В 27 древесная (изготовление L 11/02-04) использование для изготовления (плоских изделий N 3/00 изделий прессованием N 3/08) удаление при обработке древесины G 3/00) ледяная, машина для получения F 25 С 5/12 В 23 (металлическая, устройства для дробления в токарных станках В 25/02 стальная, изготовление Р 17/06) распылители стружки В 05 В 7/14 снятие с поверхности изделий при резке В 26 D 3/06] Струйные [инжекторы, использование (в системах продувки топлива в ракетных двигательных установках F 02 К 9/54 в смесительных трубках горелок F 23 D 14/16) мельницы В 02 С 19/06 насосы (F 04 (F 5/00-5/54 заливочные D 9/06) F 02 (в газотурбинных установках С 3/32 в реактивных двигателях К 1 /36) паровые в системах подачи воздуха в топку F 23 L 5/04, 17/16 в паровых котлах F 22 (В 37/72, D 7/04) в холодильных машинах F 25 В 1/06) реле F 15 С 1/14-1/20 смесители В 01 F 5/00-5/26 элементы (в следящих гидравлических и пневматических сервоприводах В 9/06-9/07 для счетно-решающих и управляющих устройств С 1/14-1/20) F 15] Струны, устройства для шлифования В 24 В 5/50 Ступени (кузовов автомобилей В 60 R 3/00 на транспортных средствах В 60 R 3/02, В 61 D 23/(00-02)) Ступицы [колес <В 60 В (5/00-5/04 9/00, 27/(00-06) крепление спиц к ним 1/04, 1/14) изготовление ковкой или штамповкой В 21 К 1/40 рулевых В 62 D 1/10)] Стыковая сварка давлением и оплавлением В 23 К 11/(02-04)  [c.184]

Сближающе-корректирующая двигательная установка 19 состоит из двух двигателей - однокамерного основного 49 с тягой 4170 Н и двухкамерного дублирующего с тягой 4110 Н, топливных баков с двухкомпонентным топливом, системы подачи топлива и автоматики установки. Баки горючего 46 и окислителя 53 сферической формы имеют эластичные мешки для разделения жидкой и газовой фаз внутри них. Для вытеснения компонентов топлива из баков и раскрутки турбонасосных агрегатов (ТНА) 48 основного и дублирующего двигателей используется газообразный азот, заправляемый в баллон 45. Сближающе-корректирующая установка смонтирована в виде автономного блока на силовом конусе 54. С торцевой стороны она имеет теплозащитный экран 51. Во время работы сближающе-корректирующей двигательной установки ориентация и стабилизация корабля осуществляются реактивными рабочими органами 50, расположенными в горизонтальной плоскости (по каналу курса) и вертикальной плоскости (по каналу тангажа). Коммутация электрических связей PH корабля осуществляются через штекерные разъемы 52.  [c.76]


Общий вес служебного отсека 23,3 т, в том числе 17,7 т топлива. В отсеке размещена маршевая двигательная установка с ЖРД фирмы Aerojet General (США), ЖРД системы реактивного управления фирмы Marquard (США), топливные баки и агрегаты двигательных установок и энергетическая установка на водород о-кис л сродных топливных элементах.  [c.38]


Смотреть страницы где упоминается термин Реактивные двигательные системы : [c.292]    [c.131]    [c.119]    [c.96]    [c.250]    [c.94]   
Ракетные двигатели (1962) -- [ c.23 ]



ПОИСК



Классификация реактивных двигательных систем

Реактивность

Система двигательная



© 2025 Mash-xxl.info Реклама на сайте