Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионный стеклах

Электролиз стекла. С повышением температуры объемное сопротивление стекла падает и под действием разности потенциалов между двумя металлическими впаями ионы стекла перемещаются к аноду или катоду.  [c.302]

Ионная тепловая поляризация возможна только в твердых диэлектриках и преобладает в веществах с выраженной нерегулярностью структуры и слабосвязанными ионами стеклах, ситаллах и диэлектрической керамике, из-за высокой концентрации структурных дефектов.  [c.259]


Во всех конструкциях натриевых электродов сравнения, чтобы предотвратить взаимодействие натрия с расплавленными солями, используют промежуточные твердые электролиты, преимущественно стекло. Применяя стеклян-но-натриевый электрод сравнения Na I Стекло . Расплав, содержащий ионы Na" , измеряют электродные потенциалы в расплавленных солях, а затем, пользуясь соответствующими калибровочными кривыми, пересчитывают их относительно стандартного натриевого электрода, обратимый потенциал которого  [c.173]

Электропроводность стекол резко возрастает с повышением температуры и с увеличением содержания ионов Ы, Ыа, К, РЬ, Сз. Тангенс угла диэлектрических потерь кварцевого прозрачного стекла = О, а для большинства стекол составляет (3—100) 10" . Закаленные стекла имеют диэлектрические потери, примерно в 2 раза большие.  [c.394]

Параметры То и То = gJo - постоянные для конструкционных металлов и их сплавов, полимеров и ионных кристаллов, совпадают по величине соответственно с периодом и частотой собственных тепловых колебаний атомов в кристаллической решетке твердого тела (равны - Ю" си 10 - Ю Гц). Параметр у характеризует структурный коэффициент, определяющий чувствительность материала к напряжению. Выражения (3.1) и (3.2) справедливы для чистых металлов, сплавов, полимерных материалов, полупроводников, органического и неорганического стекла и др.  [c.124]

Схема установки длЛ многократного ускорения ионов, / — соединения медь—стекло вакуумный насос 3—водород 4—окошко 5—отклоняющий потенциал в—электрометр  [c.146]

Активной средой служило стекло с введенным в него неодимом. Использовались переходы между энергетическими уровнями иона неодима N4 +.  [c.811]

Электрофотография (ксерография) — процесс, в котором используются фотопроводящие свойства селенового стекла. Остававшийся долгое время без объяснения этот процесс сейчас в основном понят. Для получения копии сначала заряжают верхнюю поверхность пленки из селенового стекла, распыляя по, ней положительные ионы. При этом на металлической подложке, на которую нанесено стекло, образуется отрицательный заряд изображения. Затем пленку освещают отраженным от копируемого оригинала светом. Там, где на оригинале была буква, свет поглощается, где буквы не было, свет отражается от листа и после попадания на стекло его энергия поглощается электронно-дырочными парами вблизи верхней поверхности. Сильное электрическое поле внутри полупроводника разделяет пары. Электроны поднимаются наверх и нейтрализуют положительные ионы на верхней поверхности дырки движутся к металлической подложке и нейтрализуют на ней отрицательный заряд. В результате этого поверхность селенового стекла становится электронейтральной там, где не было букв на оригинале, и остается положительно заряженной там, где буквы были. Затем к положительно заряженным областям притягиваются отрицательно заряженные черные частицы красителя. Краситель переносится на лист положительно заряженной бумаги и закрепляется нагреванием. На этом процесс копирования заканчивается.  [c.369]


В импульсных лазерах широко применяют стекло, активированное ионами Nd +. Преимушество стекол заключается в простоте изготовления образцов больших размеров и любой формы, что позволяет получить очень большие энергии выходного импульса. Кроме того, они обладают высокой оптической однородностью, в результате чего коэффициент полезного действия стеклянных генераторов выше, чем у генераторов на кристаллах. В то же время сравнительно низкая теплопроводность стекла ограничивает возможности его применения в лазерах непрерывного действия.  [c.288]

Обычно столкновение тел из таких упругих материалов, как резина, слоновая кость, сталь, стекло и др., близко к абсолютно упругому удару. Столкновение пластилиновых шариков, прыжок человека на движуш,уюся тележку, захват электрона положительным ионом и другие взаимодействия можно практически рассматривать как абсолютно неупругий удар.  [c.58]

Воротное стекло с ионами редкоземельных элементов  [c.870]

Марка стекла Концентрация ионов Nd +, 10 0 СМ- Плотность, 10 кг/см Теплопровод- ность, Удельная теплоемкость, Дж/(кг.К) Коэффициент линейного расширения, 10- к-> Модуль Юнга, 10 Па Модуль сдвига, 101 Па Коэффициент Пуассона  [c.944]

В жидких лазерных материалах может быть достигнута концентрация активных ионов того же порядка, что и в лазерных стеклах. Это позволяет получить большие энергии и мощности излучения с единицы объема активного вещества. В то же время сильная зависимость показателя преломления от температуры обусловливает значительные оптические неоднородности, возникающие при накачке активной среды, что приводит к ухудшению генерационных характеристик лазеров и увеличению расходимости лазерного пучка. Применение прокачки активной жидкости через лазерную кювету позволяет реализовать как периодический, так и непрерывный режим работы лазера.  [c.948]

В технических силикатных стеклах вследствие значительной электрической проводимости при повышенных температурах особенности ионно-релаксационных потерь могут не проявляться, сглаживаться потерями от токов утечки.  [c.60]

Электропроводность твердых диэлектриков. В используемых в технике твердых диэлектриках — бумагах, картонах, лаках, эмалях. компаундах, пленках, полимерах, керамиках и стеклах, слюдах и многих других — характерной является ионная электропро- водность. При нагреве или освещении, действии радиации, света, сильного электрического поля сначала ионизируются содержащиеся в таких диэлектриках дефекты и примеси. Образовавшиеся таким образом ионы определяют низкотемпературную примесную область электропроводности твердого диэлектрика. Как и в жидком диэлектрике, ионы занимают места временного закрепления и относительно слабо связаны с окружающими частицами. В результате тепловых колебаний они преодолевают потенциаль ный барьер W, который составляет обычно 0,5—1,0 эВ, и скачком перемещаются в другое положение. В электрическом поле такие перемещения ионов становятся направленными и они перемещаются по полю.  [c.143]

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами. В таких материалах образуются ионы, которые в ходе тепловых колебаний перебрасываются из положений временного закрепления на расстояния, соизмеримые с расстояниями между частицами (10 м), и закрепляются в новых положениях. В электрическом поле перебросы становятся направленными. В результате в диэлектрике возникает различие в расположении центров положительного и отрицательного зарядов, т. е. появляется электрический момент. Такой процесс называют ионно-релаксационной поляризацией. С ростом температуры число ионов, перебрасываемых в новые положения, увеличивается, поэтому растут поляризованность и диэлектрическая проницаемость. На рис. 5.16 приведена зависимость е, от температуры для натриево-силикатного стекла, в структуре которого имеют место слабосвязанные ионы.  [c.156]

Неорганические диэлектрики аморфной структуры, не содержащие полярных групп. К ним относятся, прежде всего, неорганические стекла, которые характеризуются ионно-релаксационной поляризацией. Диэлектрическая проницаемость стекол значительно зависит от их химического состава и температуры в пределах е = 3,8 -ь 20.  [c.12]


Диэлектрическая проницаемость чистых кварцевых и борных стекол без примесей немного превышает квадрат коэффициента преломления стекла, так как она определяется, главным образом, электронной поляризацией. У стекол сложного состава (технических стекол) при введении щелочных или щелочно-земельных металлов структурная сетка стекла изменяется. При введении щелочного окисла в стекло вводится избыточный кислород, и уже не каждый атом кислорода связан с двумя атомами кремния. Часть атомов кислорода связана с одновалентным атомом щелочного металла. Такой атом отдает один электрон ближайшему атому кислорода и оказывается положительным ионом. Одновалентный ион имеет большую свободу перемещения и может создавать тепловую ионно-релаксационную поляризацию.  [c.13]

При содержании в стекле щелочно-земельных металлов двухвалентный ион щелочно-земельного металла связан не с одним, а с двумя атомами кислорода и поэтому закреплен значительно сильнее, чем ион щелочного металла структурная сетка такого стекла не имеет разрывов и структурная упаковка атомов более плотна, чем у щелочного стекла. Поэтому диэлектрическая проницаемость бариевых, кальциевых и т. п. стекол невелика и мало зависит от температуры и частоты. -  [c.13]

Свинцовые стекла имеют повышенную диэлектрическую проницаемость, но это, по-видимому, связано с большой электронной поляризацией и смещением поляризованного атома свинца. Тепловая ионная поляризация связана с диэлектрическими потерями.  [c.13]

Рис. 9.1. Схематическое изображение структуры силикатного стекла с ионами Са и Na " (а) и только с ионами Na" (б) Рис. 9.1. <a href="/info/286611">Схематическое изображение</a> структуры <a href="/info/38741">силикатного стекла</a> с ионами Са и Na " (а) и только с ионами Na" (б)
Основными факторами, определяющими инерцию электродов, являются величина пограничного слоя вокруг электродов, концентрации и диффузия различных ионов и емкость (для ионов) стекла электрода. Если емкость стекла цреиебрежимо мала, то эффективная постоянная времени может быть определена по емкости пограничного слоя жидкости вокруг электрода и сопротивлению диффузии. Если предположить неподвижность пограничного слоя толщиной г, то время достижения переходным процессом 63,2% полного значения изменения концентрации на поверхности электрода получается нз решения уравнения диффузии в пластине  [c.461]

В стеклах, содержащих небольшое количество щелочных окислов, — порядка 5—7 мол.%, процесс обмена ионов стекла и расплава практически не происходит. Однако и при большем количестве щелочных окислов в стекле этот процесс может быть затруднен присутствием некоторых других окислов, например РЬО. Это доказывает, что процесс диффузии определяется не только содержанием щелочных окислов в стекле, но его хими-  [c.160]

Нал ич ие щелочных ионов в стеклах вызывает увеличение потерь пр-опор ци о н-алвно числу присутствующих ионов. Стекла, содержащие одн-овре-менно различные щелочи, обладают более низкими потерями, чем стекла того же состава с о-дкой лишь щелочью. Двухвалентные июны не приводят к столь большим потерям, как щелочи, н-о стекла с большим сод-ержа-нием ВаО или РЬО обладают значительными диэлектрическими потерями. Одла-ко, -И СП Ользуя к-ом-бршации этих окислов взамен одн-ого из  [c.129]

Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов (например, ионов натрия). Проводимость быстро увеличивается с ростом температуры. Диэлектрическая постоянная стекла зависит от природы модификатора. Например, введение оксида свинца в стекло повышает это значение с 4 до 10. Большое влияние на аксплуатационную долговечность оказывает термостойкость стекол. Термостойкость определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлажцении в воде (0°С). Для большинства видов стекол термостойкость колеблется от 90 до 170 0, а для кварцевого стекла она составляет 800-1000 С.  [c.14]

Например, при контакте полиамидного клея со сталью возникают химические соединения, где атом азота (полиамида) делит свои два электрона с атомами железа (стали). Одновременно между атомами кетогруппы С=0 и атомом кислорода в оксиде железа возникает дополнительная ионная связь. Таким образом, возникает так называемое хелатное соединение. Другие клеи (на основе толуилендиизоцианитов) при взаимодействии с атомами кремния (стекла) образуют ковалентные связи.  [c.16]

Изображение на экране получается с помощью синхронных разверток кадровой и строчной. Инерция зрительного ощущения приводит к восприятию движущегося изображения. Приемные трубки для телевизоров — кинескопы — выпускают в массовом производстве, а проекционные телевизионные и просвечивающие трубки — серийно. В кинескопах для фокусировки используют электронностатические линзы, для развертки — магнитное управление, угол отклонения электронного луча от оси трубки до 55°, дымчатое стекло увеличивает контрастность и уменьшает ореол, алюминированный экран устраняет ионное пятно, увеличивает контрастность и яркость изображения. Срок службы кинескопов 6000—10 ООО ч. Выпускают взрывобезопасные трубки, у которых экран обжат бандажом, компенсирующим натяжение в стекле, образующееся в результате воздействия на экран атмосферного давле-  [c.160]

Примером твердого электролита может служить стекло, в котором имеются ионы натрия. При низких температурах пере-г.1еш,ение ионов в стекле затруднено и стекло является хорошим изолятором. При нагревании стекла до 300—400 °С ионы получают козможиость перемеш аться под действием электрического поля п стекло становится проводником Э7 ектричоского тока.  [c.164]


После создания квантового генератора в микроволновой области на пучке молекул аммиака квантовая электроника начала осваивать оптический диапазон длин воли. В 1960 г. был создан первый оптический кшштоный генератор на кристалле рубина, положивший начало классу генераторов и усилителе на ионных кристаллах и стеклах. Несколько позднее был создан первый газовый оптический генератор на смеси гелия и неона, а затем генераторы на полупроводниках, красителях н т. д.  [c.267]

Неодимовые лазеры — это лазеры, в которых активным элементом является либо кристалл Y3AI5O12 (обычно называемый YAG), где часть ионов иттрия Y + замещена ионами неодима Nd +, либо оптическое стекло, активированное ионами неодима. Упрощенная схема энергетических уровней неодима в кристаллах иттрий-алюми-ниевого граната приведена на рис. 35.14. В отличие от рубинового лазера, работающего по трехуровневой схеме, неодимовый лазер работает по четырехуровневой схеме. До возбуждения подавляющее число частиц находится на исходном уровне Накачка осуществляет-  [c.287]

Кроме неодима генерация получена и на стеклах с примесью других ионов редкоземельных элементов, дие-прозия, самария, гольмия, гадолиния и т. д. В большинстве своем они генерируют в инфракрасной области.  [c.288]

Фотолюминесценция — люминесценция, возникающая при возбуждении светом видимого и ультрафиолетового диапазонов частот фотовоэбуждение). На практике фотовозбуждение используется для получения люминесценции жидких растворов, стекол, твердых диэлектриков и полупроводников. При этом роль центров люминесценции играют специально вводимые в основное вещество ионы или молекулы. Так, например, в твердые диэлектрики и стекла вводят в виде небольших примесей ионы неодима (Nd +) и других редкоземельных элементов. В жидкие растворители вводят, в частности, молекулы органических красителей.  [c.184]

К замедленным видам относится ионно-релаксацион-пая поляризация, происходящая в неорганических стеклах и кристаллах с неплотной упаковкой ионов, и миграционная, свойственная твердым диэлектрикам при наличии макроскопических неоднородностей.  [c.544]

Диэлектрические материалы применяют в микроэлектронике в качестве изоляционных покрытий и масок при диф( )узии и ионной имплантации, герметизирующих покрытий легированных пленок, предотвращающих выход легирующих элементов, герметизирующих слоев, защищающих поверхности приборов от внещних воздействий, для диффузии примесей из слоев легированных оксидов, а также для геттерирования примесей и дефектов. Наиболее перспективны для этих целей оксид и нитрид кремния, а также имеющие более узкое применение оксинитрид кремния и некоторые стекла.  [c.39]

В твердотельной квантовой электронике в качестве активатор-ных центров, создающих нужные энергетические уровни, служат активаторы — ионы редкоземельных элементов периодической системы, особенности строения которых необходимо выяснить. Активные элементы твердотельных квантовых устройств (активная среда) представляют собой матрицу из диэлектрика — кристалла или стекла, в которую введены ионы активатора. Свойства матрицы во многом определяют такие свойства активных элементов, как эффективность, ресурс, и существенно влияют и на параметры введенных ак-тиваторных центров. Оптимизировать свойства активной среды означает, что необходимо сформулировать требования к ее активаторным центрам, выбрать активный ион, подобрать в качестве матрицы  [c.57]

У некоторых кристаллических веществ, например у щелочно-галоидных кристаллов и кристаллов, содержащих ноны титана, висмута, стронция, существует ионная релаксационная поляризация. Появление слабо связанных ионон II электронов часто обусловлено дефектами кристаллической решетки, такими, как примесные ионы, пустые узлы и межузельные ионы, дислокации. В аморфных телах слабо связанные ионы возникают из-за так называемой неплотной упаковки частиц. Такие ионы существуют в стеклах.  [c.147]

Как видно из табл. 3-16, эле ктрическиепара метр ы фа р -фора сильно зависят от температуры. Это объясняется наличием в черепке фарфора большого количества полевошпатового стекла с повышенной проводимостью за счет наличия легкоподвижных ионов ш,елочных металлов, особенно натрия, ионы которого имеют меньший радиус, чем ионы калия. Это иллюстрируется рис. 3-74.  [c.236]

Общим требованием к большинству керамических высокочастотных материалов, по сравнению с обычным электротехническим фарфором, является независимость е,- от частоты и низкое значение tg О не только при комнатной, но и гри повышенной температуре. В известной мере это достигается уменьшением содержания менее чистой пластичной глинй, введением окиси бария и повышением содержания глинозема. Ионы бария в известной мер нейтрализуют повышение электрической проводимости за счет легкоподвижных ионов калия, содержащихся в полевошпатовом стекле и способствуют снижению tg б. За счет повышенного содержания глинозема масса имеет пониженную формуемость и более узкий интервал спекания. Дальнейшее развитие высокочастотной керамики пошло по пути создания масс с использованием различных окислов металлов, иногда специально синтезируемых. Таким путем удалось получить материалы с весьма высокими значениями z,. (для конденсаторов) и разными значениями ТК е , в том числе положительного знака.  [c.238]

В ходе тепловой ионной поляризации твердых диэлектриков переброс слабосвязанных ионов в электрическом поле происходит с потерями энергии. В некоторых диэлектриках с неплотной упаковкой объема частицами, например стеклах, где имеет место ионно-релаксационная поляризация, также наблюдаются закономерности изменения tg6 от температуры и частоты, характерные для дипольной поляризации. На рис. 5.24 приведены температурные и частотные зависимости для алюмоцннкосиликатного стекла — ситалла на основе оксидов SiOj, А1 0з и ZnO. Существование или отсутствие максимумов tg 6 в температурной и частотной зависимостях (рис. 5.24) зависит от условий термообработки стекла.  [c.164]

Увеличение tg б при нагреве в стекле или в поликристалличе-ском диэлектрике — керамике — может также вызываться одновременно увеличением проводимости материала и ростом числа сла-йосвязанных ионов, участвующих в ионно-релаксационной поляри-шции. Тангенс угла диэлектрических потерь таких материалов с увеличением температуры растет, но максимальное его значение мри измерениях не фиксируется, как это видно из рис. 5.25, где приведены зависимости tg 6 от температуры для Na — Ва — Mg— алюмоборосиликатного стекла, высоковольтного фарфора и стеатита.  [c.165]


Смотреть страницы где упоминается термин Ионный стеклах : [c.280]    [c.393]    [c.350]    [c.895]    [c.95]    [c.98]    [c.50]    [c.60]    [c.148]    [c.237]    [c.13]   
Волоконные оптические линии связи (1988) -- [ c.175 ]



ПОИСК



Выращивание частиц металлов в стекле и внутри ионных кристаллов

Иониты

Ионов

По ионная

Спектрально-люминесцентные параметры ионов Nd8 в стеклах

Федоров, В. И. Данилкин. О введении ионов натрия и калия из смешанных расплавленных солей в натриевое стекло



© 2025 Mash-xxl.info Реклама на сайте