Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача о поршне с плоскими волнами

Очевидно, что аналогичная задача для плоских волн после добавления поступательной скорости, равной, но противоположно направленной начальной скорости газа, сводится к задаче о движении поршня с постоянной скоростью.  [c.170]

Будем рассматривать класс течений, в которых не возникает сильных разрывов. Такие течения будут потенциальными и будут состоять из областей постоянного движения, простых, двойных и тройных волн (тройная волна будет описываться уравнением (1.2) для j = 3). в [7, 9] были рассмотрены плоские задачи о выдвижении из политропного тяжелого газа с малыми скоростями Vi, V2 двух поршней Pi, Р2 с углом а между ними. Было показано, что полное потенциальное течение можно построить лишь для а = и/к к целое).  [c.144]


Рассмотрена вариационная задача об одномерном безударном сжатии идеального (невязкого и нетеплопроводного) газа плоским (г/ = 0), цилиндрическим (г/ = 1) и сферическим (г/ = 2) поршнем. Как ив [1, 2], минимизируется работа поршня при заданном его перемещении за фиксированное время tf. При постановке задачи важную роль играет время то прохождения звуковой волной отрезка Ха — где X — декартова, цилиндрическая или сферическая координата, а Жа и ж о отвечают поршню (при = 0) и неподвижной стенке (для г/ = 1 и 2, возможно, — оси или центру симметрии). Если не оговорено особо, Ха° < Жа, и поршень в плоскости х1 движется влево. По постановке задачи в газе при t < tf не допускаются ударные волны. Поэтому, если < го, то слева от начальной (7 -характеристики газ невозмущен и может быть исключен из рассмотрения, т.е. случай tf < то сводится к случаю tf = то с меньшим то и большим Ха°- В отличие от [1, 2], где газ при = 0 предполагался покоящимся и однородным, далее при нулевой начальной ж-компоненте скорости допускается переменность начальной энтропии, а для V = 1 — и радиально уравновешенной начальной закрутки.  [c.311]

Пусть политропный газ с уравнением состояния р = (р — давление, р — плотность, 7 — ноказатель адиабаты, о = onst) в начальный момент времени t = О покоится внутри некоторого двугранного угла, образованного двумя пересекающимися плоскостями Pi и Р2, угол а между которыми удовлетворяет соотношению О < а тг/2. Будем рассматривать задачу о нахождении нестационарных плоских течений, возникающих в газе, когда плоскости Pi и Р2, играющие роль поршней, в момент t = О начинают выдвигаться из газа с постоянными скоростями, равными соответственно Vi и V2. Возникающие течения будут двумерными автомодельными, так что подлежащие определению компоненты вектора скорости ui и U2 и скорость звука с будут зависеть от двух независимых автомодельных переменных = xi/t, 2 = X2jt, где х и Х2 — плоские декартовы координаты. При этом будем предполагать, что в течениях не образуются ударные волны  [c.99]

Задача о поршне, уже рассмотренная в 18 для одномерных движений с плоскими волнами, представляет интерес и для движений с цилиндрической или сферической симметрией. В этих случаях сравнительно простое — автомодельное — решение существует лишь тогда, когда поршень вдвигается в покоящийся газ, расширяясь из точки (начала координат) с постоянной скоростью для других краевых условий задача о поршне неавтомодсльна. Тем не менее исследование решения задачи о порщне полезно для понимания общей методики отыскания таких решений.  [c.205]


Практические тестовые задачи, обладающие точными решениями для одномерных течений невязкого совершенного газа, удачно подобраны Хиксом [1968]. Он привел семь тестовых задач, включающих скачки, волны разрежения и взаимодействие волн. Хикс и Пелцл [1968] применяли эти задачи для сравнения точности различных схем в лагранжевых переменных. Гордон и Скала [1969] в качестве тестовых задач использовали плоскую задачу о поршне, плоскую задачу о разлете массы и центрально-симметричную задачу о сферическом взрыве. Никастро [1968] нашел точные автомодельные решения радиационной газодинамики в сферически-симметрнчном случае как для взрыва, так и для схлопывания. Эти решения оказались весьма ценными для проверки столь трудных для численного решения задач, поскольку в них накладывались не слишком жесткие ограничения на начальные условия и вид закона переноса излучения. Стерн-берг [1970] нашел автомодельные решения для распространения плоских, цилиндрических и сферических ударных волн с учетом химических реакций.  [c.487]

Хорошо известно решение одномерной задачи о движении по произвольному закону в покоящемся газе плоского бесконечного поршня, когда в возмугценной области течение газа описывается простой волной Римана. Построение аналитическими методами решений задач о движении в газе криволинейных поршней связано с большими трудностями как в пространственном, так и в плоскопараллельном случае. Некоторые результаты в этом направлении получены с использованием аппарата теории течений с вырожденным годографом скорости, в частности, с использованием уравнений потенциальных двойных и тройных волн [1, 2].  [c.152]

Н. Л, Крашенинникова (1955) рассмотрела задачу о расширении в покоящемся газе поршня с радиусом В, зависящим от времени по степенному закону В f + . Решение этой задачи автомодель-но, если пренебречь начальным давлением газа. Крашенинникова провела исследование задачи для нескольких комбинаций тг и V (V = 1, 2, 3 для течений с плоскими, цилиндрическими и сферическими волнами) и установила, что решение с ударной волной, отделяющей покоящийся газ от области возмущенного поршнем движения, существует не для всех комбинаций этих величин. Л. Г. Велеско, Г. Л. Гродзовский и Н, Л. Крашенинникова (1956) провели систематические расчеты автомодельных течений, возникающих при расширении цилиндрического поршня для значений ге от О до —0,35. Этим течениям эквивалентны симметричные течения около тел вращения степенной формы при числе Маха М = оо.  [c.186]

До настоящего времени здесь подробно рассмотрены лишь одномерные автомодельные задачи о движении газа при плоском и цилиндрЕпеском взрыве (В. П. Коробейников и Е. В. Рязанов, 1962, 1964). Рассматривались также некоторые вопросы движения поршня в газе (И. П. Малышев, 1961) и вопросы затухания ударных волн на больших расстояниях от места из возникновения (А. А. Луговцов, 1966). С учетом известной аналогии между стационарными гиперзвуковыми течениями около тонких тел и течениями газа при взрыве и движении поршня (см., например, Г. Г. Черный, 1959), результаты вышеупомянутых исследований могут быть использованы для качественного и приближенного количественного описания обтекания тел гиперзвуковым потоком электропроводного газа при наличии магнитного поля. Из возникающих здесь и еще не решенных полностью простейших задач можно отметить следующие  [c.452]

Синусоидальные волны малой амплитуды. Винсенти и Болдуин [8] рассмотрели задачу о синусоидальном колебании около положения а = О неограниченного плоского поршня, находящегося в контакте с газом при температуре Го, когда температура его изменяется синусоидально с малой амплитудой около Тд. При этом явно учитывался тепловой поток к газу за счет радиации, в то время как рассеянием радиации и потоком тепла за счет молекулярного и электронного переноса пренебрегалось.  [c.436]

Инициирование одномерной плоской детонации в конденсиро> ванном ВВ (задача 1). Пусть детонация инициируется действием поршня на левой границе заряда. С момента времени t = О поршень со скоростью Vp в течение времени tp вдвигали в ВВ, причем скорость Vp и время tp достаточны для возбуждения устойчивой детонацпонной волны, после чего поршень либо останавливался, либо отводился назад. Правая граница заряда ВВ (г = Ь) предполагалась свободной. Таким образом, начальные условия при =0 определяют покоящееся состояние (Uo = 0) среды в виде исходной (аю = 1) фазы при температуре То и нулевых давлении и напряжении (р = О, г =0), а исходные плотности фаз р°д и р°д для ВВ такие, что  [c.266]



Смотреть страницы где упоминается термин Задача о поршне с плоскими волнами : [c.297]    [c.8]    [c.143]    [c.74]    [c.388]    [c.258]   
Механика сплошной среды Т.1 (1970) -- [ c.384 ]



ПОИСК



Волна плоская

Задача о поршне

Плоская задача

Поршень

Поршень плоский



© 2025 Mash-xxl.info Реклама на сайте