Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Труба расширенная

Обратимся к рис. 4.15, на котором представлен случай, когда труба диаметром dj переходит в трубу с большим диаметром dj (da > di). Струя, выходяш ая из первой трубы, на некоторой длине расширяется и в сечении 2—2 заполняет все сечение второй трубы. Расширение струи сопровождается отрывом ее от стенок и образованием соответствующей водоворотной зоны, имеюш,ей кольцевую форму.  [c.121]

Различные части трубы (расширения, сужения и т. д.) во многих случаях бывают значительно короче длины звуковой Волны. Когда это имеет место, поведение звука в трубе анало-  [c.259]


Чем больше угол расширения, тем на меньшей длине достигается это выравнивание профиля скорости. Выравнивание потока по сечению диффузора за начальным участком может быть объяснено тем, что в расширяющихся трубах сильно возрастает величина пульсационных скоростей, а так как средняя скорость потока по длине диффузора уменьшается, отношение пульсационных скоростей к средней, т. е. степень турбулентности, возрастает, вследствие чего повышается интенсивность обмена количеством движения между различными слоями движущейся среды.  [c.26]

Из изложенного очевидно значительное влияние даже небольшого расширения сечения трубы на распределение скоростей. Профиль скорости в диффузоре получается более вытянутым в направлении движения, чем в трубе постоянного сечения, т. е. в центральной части сечения диффузора скорости больше, а вблизи стенок градиент скорости меньше. Для сходящейся трубы (конфузора) структура потока противоположна структуре потока в диффузоре профиль скорости более сплющен, чем в трубе постоянного сечения, а градиент скорости вблизи, стенок соответственно меньше.  [c.37]

Малая регулярная неравномерность (малые возмущения потока), при которой по всему поперечному сечению трубы жидкость движется только поступательно (продольные составляющие скоростей всегда положительны), и поперечные составляющие скоростей малы по сравнению с продольными. Эта неравномерность свойственна жидкости, движущейся в длинных прямых трубах, в начальных участках диффузоров с малыми углами расширения, в сечениях за плавными поворотами и т. д. (см. рис. 1.2, 1.13, 1.14, 1.42, 1.44).  [c.78]

Если рассматриваемый поток и решетку заключить в трубу или в канал (рис. 3.2), то вследствие неразрывности движения замедление (расширение) струйки тока, обладающей большей скоростью, приведет к ускорению (сужению) струйки тока с меньшей скоростью и соответственно повышению статического давления в первой струйке. Таким образом, и в этом случае появится поперечный градиент давления, под действием которого жидкость перед решеткой будет перетекать из области с большими скоростями в область с меньшими скоростями. Это приведет к выравниванию скоростей в поперечном сечении трубы.  [c.79]

Задача VII—12. Определить отношение диаметров D/d, при котором в случае внезапного расширения трубы будет иметь место наибольшая разность показаний пьезометров A/t для любого заданного расхода.  [c.158]

Если перепад температур неустраним по функциональному назначению детали (трубы теплообменных аппаратов), то выгодно применять материалы с благоприятным сочетанием прочности, теплопроводности и теплового расширения. Например, трубы из ситаллов с нулевым коэффициентом линейного расширения совершенно не подвержены термическим напряжениям.  [c.375]


В экспериментальных работах выявлено, что основное влияние на эффективность процесса энергоразделения вихревых труб всех типов и конструктивного исполнения оказывает давление на входе Р. А.П. Меркулов [116] отмечает, что при сохранении давления среды, в которую происходит истечение охлажденных масс газа Р , рост входного давления однозначно определяющий рост степени расширения в вихревой трубе по охлажденному потоку Р /Р , приводит к росту э Й>ектов охлаждения Т и холодопроизводительности q (рис. 2.7).  [c.49]

Максимальное значение температурной эффективности для конкретной вихревой трубы соответствует вполне определенной степени расширения Причем с ростом перепада давления снижается относительная площадь соплового ввода F , обеспечивающая максимально возможное значение достигаемой температурной эффективности Л/- Обобщение опытных данных с ис-  [c.52]

Очевидно, сложное поведение зависимостей ti, = /(л ) и ti, = = /(/, ) на докритических режимах связано с ростом скорости истечения на входе в сопло, а следовательно, с увеличением уровня относительных сдвиговых скоростей в камере энергоразделения и плотности потока кинетической энергии масс газа. Действительно, с ростом степени расширения в вихревой трубе О < < л < л р происходит рост скорости истечения, а следовательно, и рост снижения термодинамической температуры. Несмотря на рост абсолютных эффектов охлаждения при изоэнтропном расширении в соответствии с зависимостью (2.18) температурная эффективность возрастает в результате более интенсивного роста эффектов охлаждения, обусловленного ростом падения термодинамической темпе >атуры потока на выходе из сопла закручивающего устройства  [c.53]

Подтверждающие линейность функций А/ =/(7 , ) и Дг =/(7 , ) результаты были получены в опытах [153] на высокотемпературной вихревой трубе в диапазоне 300 < 7, < 1500 К. Если учесть, что в области сравнительно низких температур на входе в трубу при работе на сжатом гелии А.И. Гуляевым были получены идентичные результаты, то можно сделать следующий вывод. В интервале температур, в котором состояние газа с достаточной степенью точности описывается уравнением Клапейрона-Менделеева PV= RT, можно считать температурную эффективность вихревых труб при оптимальном сочетании конструктивных параметров и степени расширения ти. в вихревой трубе, не зависящей от температуры  [c.57]

Условия работы вихревых труб таковы, что оптимальное значение плошади соплового ввода зависит от многих входных и геометрических параметров, определяющих режим работы, в первую очередь, от степени расширения в вихревой трубе. Ю.Б. Чижиков на основе теории подобия получил приведенную ранее зависимость (2.19), из которой F для двухатомных газов и воздуха можно определить как F = 0,327/TtJ . Рекомендации достаточно упрощены, так как не учитывают всей совокупности совместного воздействия всех управляющих параметров. Очевидно,  [c.71]

Дальнейшие исследования позволили уточнить выражения, сведя их к единой формуле для цилиндрических и конических труб, учитывающей реальную степень расширения и влияние по-  [c.75]

Далее рассчитываем степень расширения газа в вихревой трубе  [c.228]

I, II и III — отклонение вальцовочных соединений от норм. / — диаметр гнезда 61,8 вместо 61,0 конец трубы расширен вальцовкой и отожжен // —труба с приваренным концом материал Ст. 20 III — конец подвальцовывался после первого гидравлического испытания.  [c.108]

Заготовка технологических (внутренних) труб. Операция отрезки труб из стали 1Х18Н9Т (поз. 7) по заданным размерам выполняется на трубоотрезных станках (типа 914Б) или на специальных станках с абразивным кругом при отсутствии перечисленного оборудования отрезку труб возможно производить на токарно-винторезных станках. На таких же станках отрезаются промежуточные кольца из труб (поз. 2). Изготовление промежуточных колец из стали 1Х18Н9Т производится из тех же труб расширением их в штампе на гидравлическом Прессе (рис. 135).  [c.217]


При сварке методом автоонрессовки получение усиления достигается за счет пластической дефоришции нагретого металла в направ-чепип, перпендикулярном оси трубы, при многократном пагреве металла в мосте стыка. Этим способом можно сваривать трубы из металла с большим коэффициентом линейного расширения. Сварку первого слоя рекомендуется выполнять короткой  [c.61]

Резкое местное сужение и дальнейшее расширение проход-лого сечения отдельной струи вызывает отрыв ее от поверхности твэла. Возникновение турбулентных пульсаций и, по мере увеличения скоростей, появление отрывного течения струек приводят к значительно болынему гидродинамическому сопротивлению при течении охладителя через шаровые твэлы, по сравнению с теченлем теплоносителя в трубах при одинаковом  [c.39]

На рис. 1.32 для сравнения приведены профили скорости для всех трех случаев. Следует отметить, что влияние расширения и сужения труб на распределение скоростей принципиальвю одинаковое для турбулентного и ламинарного течений.  [c.38]

Пути совершенствования техники и технологии неразрывно связаны с расширением научных исследований в области нетрадиционного использования недостаточно изученных физических явлений, эффектов. Известно, что закрутка потока очень часто полезно влияет на процессы, наблюдающиеся при течении обычных и реагирующих потоков в теплообменных аппаратах, в вихревых трубах Ранка—Хилша, циклонных сепараторах, центробежных форсунках, вихревых диспергаторах и т. п.  [c.7]

На рис. 2.4—2.6 показаны характеристики наиболее типичных вихревых труб. Анализ выражения (2.8) позволяет сделать вывод о том, что с ростом ц величина Д/ при фиксированном значении Д/ уменьшается. Однако опыты показывают, что с ростом ц At возрастает, но At при этом все же уменьшается, а холодопро-изводительность трубы до оптимального по этому показателю значения величины относительной доли охлажденного потока ц возрастает. С ростом степени расширения сжатого газа в трубе абсолютные эффекты охлаждения At и подогрева Д/ при прочих равных условиях возрастает, однако, эта тенденция, как будет показано ниже, справедлива лишь до определенного значения числа Р /Р .  [c.46]

Нетрудно заметить, что максимальная холодопроизводитель-ность вихревых труб достигается при относительных долях охлажденного потока 0,5 < ц < 0,7 и возрастает с ростом степени расширения давления на входе, т.е. в данных опытах с ростом степени расширения в вихревой трубе  [c.49]

В середине 60-х и в конце 70-х годов появились интересные конструкции, позволившие довести температурную эффективность процесса энергоразделения до 0,70 [40,116] при степени расширения п,- 9, абсолютный эффект охлаждения составил ЛТ = 87К. Адиабатный КПД вихревых труб достиг 0,38-0,4 для неохлаждаемых фуб (вихревая труба с дополнительным потоком Ш.А. Пиралишвили) и 0,4-0,42 для неадиабатных охлаждаемых вихревых труб с рециркуляцией подофетого потока (вихревая труба с рециркуляцией потока А.Д. Суслова и А.В. Мурашкина). Рассмотрим их подробней.  [c.79]

Большую роль в работе вихревой трубы с дополнительным потоком играет диффузор. Его влияние на степень расширения в вихре подробно исследовали А.П. Меркулов и Н.Д. Колышев [119] при изучении самовакуумирующихся вихревых труб. В вихревой трубе с дополнительным потоком некоторые из них подтвердились. Ими были даны рекомендации по оптимальным характерным геометрическим параметрам щелевого диффузора, позволяющим получить наибольшую степень расширения в вихре 7iJ при фиксированной степени расширения в вихревой трубе Пр а следовательно, и наибольшие эффекты охлаждения. В частности, радиус перехода от камеры энергоразделения к перед-  [c.87]

Влияние масштабного фактора, проявляющееся в зависимости термодинамической эффективности процесса энергоразделения от диаметра камеры энергоразделения, было обнаружено Хил-шем [229], а впоследствии подтверждено многочисленными опытными результатами других авторов [40,68,112,116]. Все экспериментаторы отмечают рост эффективности энергоразделения вихревых труб с увеличением диаметра камеры энергоразде-ления. Этот вывод справедлив для вихревых труб с различными диаметрами, даже при разном конструктивном исполнении. Такая устойчивая зависимость не может быть однозначно объяснена с позиций термогазодинамики закрученного потока, тем не менее опыты (рис. 2.32) подтверждают ее существование. В [116] показано, что данные различных авторов для труб разных диаметров при одной и той же степени расширения в вихревой трубе хорошо укладываются на одну прямую, а следовательно, могут быть описаны линейной зависимостью  [c.93]

Этот факт имеет достаточно прозрачное физическое объяснение. При неизменных геометрии трубы и степени расширения в ней увеличение ц достигается прикрьггием дросселя, т. е. уменьшением площади проходного сечения для периферийных масс газа, покидающих камеру энергоразделения в виде подогретого потока. Это равносильно увеличению гидравлического сопротивления у квазипотенциального вихря, сопровождающегося ростом степени его раскрутки, увеличением осевого градиента давления, вызывающего рост скорости приосевых масс газа и увеличение расхода охлажденного потока. Наибольшее значение осевая составляющая скорости имеет в сечениях, примыкающих к диафрагме, что соответствует опытным данным [116, 184, 269] и положениям усовершенствованной модели гипотезы взаимодействия вихрей. На критических режимах работы вихревой трубы при сравнительно больших относительных долях охлажденного потока 0,6 < р < 0,8 течение в узком сечении канала отвода охлажденных в трубе масс имеет критическое значение. Осевая составляющая вектора полной скорости (см. рис. 3.2,а), хотя и меньше окружной, но все же соизмерима с ней, поэтому пренебрегать ею, как это принималось в физических гипотезах на ранних этапах развития теоретического объяснения эффекта Ранка, недопустимо. Сопоставление профилей осевой составляющей скорости в различных сечениях камеры энергоразделения (см. рис. 3.2,6) показывает, что их уровень для классической разделительной противоточной вихревой трубы несколько выше для приосевых масс газа. Максимальное превышение по модулю осевой составляющей скорости составляет примерно четырехкратную величину.  [c.105]


Рассматривая неустойчивость потоков в вихревой трубе, авторы работ [95, 96] предлагают модель, в которой агентами энергопереноса являются КВС, причем при анализе для удобства авторы оперируют с тороидальной формой. Согласно предлагаемой модели, КВС в результате взаимодействия друг с другом и с основным потоком перемещаются к центру или к периферии. В первом случае они расширяются, теряют устойчивость, замедляют вращение и передают механическую энергию ядру, обеспечивая тем самым его квазитвердую закрутку, во втором случае, увеличиваясь по радиусу, сжимаются и диссипируют вследствие работы сил вязкости. Процессы увеличения или уменьшения размера вихрей относятся к процессам деформационного характера. В этом смысле рассматриваемая деформация симметрична. При несимметричной деформации одна часть тора претерпевает сжатие, а диаметрально противоположная — расширение. Если учесть, что в вихревом тороиде низкоэнергетические массы газа располагаются по его оси [67], то должно происходить их смещение вдоль криволинейной оси тороида в центр вихревой трубы с последующим их перемещением в приосевую зону вынужденного вихря, и уходом разогретой оболочки на периферию.  [c.125]

Основываясь на результатах работы [223], можно предположить, что использование устройств, раскручивающих охлажденный и подогретый составляющие потоки, покидающие вихревые трубы, может повысить эффееты энергоразделения вследствие увеличения степени расширения в вихре. Это предположение получило экспериментальное подтверждение в работах А.П. Меркулова и его учеников, а также в работах В. И. Метенина и других исследователей из различных научных центров как в нащей стране, так и за рубежом [40, 112, 116, 137, 222, 226, 243, 245, 260, 262, 263, 270]. Экспериментально и теоретически подтверждено влияние на качество процесса теплофизических характеристик рабочего тела, в том числе и показателя адиабаты [35—40, 112, 116, 152, 153]. Частично получил опытное подтверждение вывод о пропорциональности абсолютных эффектов охлаждения от температуры газа на входе в сопло-завихритель [112,137]. Однако существенные расхождения теоретических предпосылок с результатами экспериментальных исследований не позволяют сделать вывод о достоверности рассматриваемой физико-математической модели процесса энергоразделения. Прежде всего расхождение заключается в характере распределения термодинамической температуры по поперечным сечениям камеры энергоразделения вихревых труб. В гипотезе рассмотрен плоский вихрь, поэтому объективности ради следует сравнить эпюры температуры для соплового сечения. Согласно [223], распределение полной температуры линейно по сечению, причем значение максимально на поверхности трубы. Эксперименты свидетельствуют о существенном удалении максимума полной температуры от поверхности, причем это отклонение не может быть объяснено лищь неадиабатностью камеры энергоразделения [17, 40, 112, 116, 207, 220, 222, 226, 227-231, 245, 251, 260, 262, 263, 267, 270]. Опыты показывают, что эффективность энергоразделения существенно зависит от геометрии трубы и длины ка-  [c.154]

Другой представитель центробежной гипотезы, Вебстер в отличие от Эрделаи предполагал, что приосевые элементы вращающегося газа охлаждаются в процессе расширения от давления на периферии до давления на оси трубы [269]. Элементы газа при этом перемещаются по спирали, совершая работу против центробежных сил (радиальная работа расширения) и затрачивая энергию на разгон соседних частиц газа (тангенциальная работа) (рис. 4.2).  [c.155]

Численный эксперимент по определению запаса кинетической энергии, затраченного на реализацию микрохолодильных циклов (рис. 4.10), показал, что распределение окружной скорости практически во всем диапазоне отличается от закона вращения твердого тела. Причем с ростом относительного расхода охлажденного потока д, которому соответствует снижение степени расширения газа в вихревой трубе л,, отклонение от закона вращения твердого тела у вынужденного вихря увеличивается. При одном и том же давлении на входе /, величина л, характеризующая сте-  [c.204]

Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

Результаты численного эксперимента показаны в виде номограмм (рис. 4.15), связывающих между собой значения режимных и геометрических параметров, обеспечивающих достижение максимальных эффектов подогрева части газа, вводимого в вихревую трубу. Номограммы позволяют по заданному конкретному режиму работы ц = idem и конкретной геометрии трубы определить действительную степень расширения в вихревой трубе и число Маха М, на выходе из сопла завихрителя.  [c.214]

Если свойство производства холодного потока у вихревых труб применяется довольно широко, то подофев части исходного газа используется заметно реже [15, 34-40, 116]. Однако в последнее время появилась серия работ по вихревым подофевателям [34—40, 86, 135, 141, 144, 154], высокотемпературным вихревым трубам, указывающая на возможные пути расширения спектра  [c.218]

Относительный диам отверстия диафрагмы для конической вихревой трубы равен d = О. б + 0,37ц, для цилиндрической — по данным А.П. Меркулова d = 0,35 + 0,313ц. Более точно этот диаметр с учетом степени расширения в вихревой трубе для режима максимальной температурной эффективности может быть найден по формуле  [c.222]


Смотреть страницы где упоминается термин Труба расширенная : [c.133]    [c.22]    [c.50]    [c.45]    [c.46]    [c.50]    [c.50]    [c.56]    [c.56]    [c.68]    [c.83]    [c.103]    [c.195]    [c.214]    [c.221]   
РСТ, спин и статистика и все такое (1966) -- [ c.93 ]



ПОИСК



C/C++ расширенный

Вещественные точки расширенной трубы

Заделка стыков чугунных канализационных труб расширяющимся цементом

Расширяющаяся отсасывающая труба

Сборка чугунных труб с заделкой раструбов расширяющимся цементом

Трубы и расширенные трубы

Трубы и расширенные трубы



© 2025 Mash-xxl.info Реклама на сайте