Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники рекомбинация носителей

Концентрации носителей Па и ра называют равновесными они устанавливаются при наличии термодинамического равновесия. В таком полупроводнике скорость тепловой генерации носителей заряда (генерации за счет теплового возбуждения) равна скорости их рекомбинации. Поэтому По и ро остаются постоянными при неизменной температуре. В собственном беспримесном полупроводнике Па=Ро, носители генерируются и рекомбинируют парами. В примесных полупроводниках с донорными примесями (п-полупроводниках) По>ро, а в полупроводниках с акцепторными примесями (р-полупроводниках) п <ро, здесь наряду с парными процессами происходят также одиночные процессы генерации и рекомбинации носителей. Определяемая выражением (7.3.1) проводимость Оо называется равновесной. Она обусловливает электрический ток, возникающий в неосвещенном полупроводнике при приложении к нему раз-и сти потенциалов (так называемый темповой ток).  [c.174]


Воздействие света, электрического поля и других факторов может привести к появлению дополнительных, избыточных по отношению к равновесным, концентраций свободных носителей, их называют неравновесными носителями заряда. При неизменной интенсивности внешнего фактора в полупроводнике устанавливается стационарное состояние, при котором скорости генерации и рекомбинации носителей заряда равны. В этих условиях концентрации избыточных носителей заряда равны г п = п - пд к Ар — р - ро, где пир- постоянные концентрации электронов и дырок при наличии внешнего фактора пд а рд - то же, в отсутствие внешнего фактора, т. е. равновесные концентрации. Если в полупроводнике нет объемного заряда, то выполняется условие его электрической нейтральности  [c.64]

Область II начинается с момента, когда уровень Ферми приближается к уровням ловушек. Дальнейшее повышение температуры здесь приводит к непрерывному понижению уровня Ферми и выключению из работы все большего числа ловушек. Поэтому скорость рекомбинации носителей уменьшается, а время жизни возрастает. Максимального значения т достигает при температуре перехода полупроводника к собственной проводимости Г .  [c.178]

Следует указать, что область применения уравнения ВАХ (8.46) ограничивается для прямых смещений напряжениями, при которых еще существует потенциальный барьер перехода (qV < фо) н его сопротивление много больше сопротивления п- и р-областей полупроводника. Для обратных смещений это уравнение выполняется до напряжений, меньших пробивных. Кроме того, при выводе этого уравнения мы пренебрегали тепловой генерацией и рекомбинацией носителей заряда в самом слое объемного заряда, считая era узким. Наконец, при практическом использовании выражения (8.46) надо помнить, что температура Т, входящая в это выражение, представляет собой температуру р—п-перехода, которая в процессе его работы может существенно отличаться от температуры окружающей среды.  [c.228]

Диффундируя в глубь полупроводника, неравновесные носители рекомбинируют, проникая в среднем на расстояние диффузионной длины от слоя объемного заряда р — п-перехода. Если при этом существенная доля актов рекомбинации происходит с излучением света, то, создав условия для выхода этого света наружу, полупроводниковый диод можно использовать как источник излучения. Такой диод называют светодиодом.  [c.331]

Д. н. а. в п. сопровождается рекомбинацией носителей заряда в полупроводниках. В результате при биполярной диффузии неравновесных носителей диффузионный поток проникает на расстояния порядка диффузионной длины, носителей от источника неравновесных носителей.  [c.690]


Туннельная (полевая) генерация и рекомбинация носителей в обеднённых слоях. В отличие от объёма полупроводника, где возможны только вертикальные  [c.448]

Излучение фотонов в полупроводниках происходит при рекомбинации носителей заряда (электронов и дырок). Частота излучения / где .W — ширина запрещенной зоны.  [c.250]

Экспериментальное исследование захвата и рекомбинации носителей заряда на поверхности полупроводников  [c.108]

Неидеальность кристаллической решетки вблизи границы полупроводника приводит к большому числу локальных энергетических состояний в запрещенной зоне. В особенности это относится к гетероструктуре (см. гл. 9), так как в ней имеются неоднородности внутри кристалла. Эти неоднородности приводят к большому числу энергетических уровней, которые действуют как центры рекомбинации. Через эти энергетические состояния идет в основном безызлучательная рекомбинация, поэтому наличие поверхности или границ раздела может существенно снизить внутреннюю квантовую эффективность прибора. Так же, как и при рассмотрении рекомбинации в материале, можно рассматривать суммарную скорость рекомбинации носителей на поверх-  [c.223]

Зависимость Ф. от длины волны излучения к определяется спектром поглощения полупроводника. По мере увеличения Я фототок Ф. сначала достигает максимума, а затем падает (рис. 2). Спад фототока объясняется тем, что при большом коэфф. поглощения весь свет поглощается в поверхностном слое проводника, где очень велика скорость рекомбинации носителей (поверхностная рекомбинация .  [c.827]

Одновременно с процессом образования свободных носителей генерацией) идет процесс их исчезновения рекомбинации). Часть электронов возвращается из зоны проводимости в валентную зону и заполняет разорванные связи (дырки). При данной температуре за счет действия двух конкурирующих процессов генерации и рекомбинации в полупроводнике устанавливается некоторая равновесная концентрация носителей заряда. Так, например, при комнатной температуре концентрация свободных электронов и дырок составляет в кремнии примерно 10 ° см 3, в германии приблизительно Ю з см-з.  [c.242]

В возбужденном полупроводнике имеются неравновесные носители заряда — электроны и дырки. К излучению света приводят их рекомбинация. Рассмотрим механизмы излучательной рекомбинации более подробно.  [c.314]

Межзонное рекомбинационное излучение. Выше отмечалось, что поглощение света полупроводником может привести к образованию электрона в зоне проводимости и дырки в валентной зоне. Если межзонный переход является прямым, то волновые векторы этих носителей заряда одинаковы к —к. Образовавшиеся свободные носители заряда участвуют в процессах рассеяния, в результате чего за время релаксации —10 с) электрон опускается на дно зоны проводимости, а дырка поднимается к потолку валентной зоны. При их рекомбинации генерируется фотон, т. е. возникает излучение света. Переходы электронов из зоны проводимости в валентную зону могут быть прямыми и непрямыми (так же как переходы при поглощении света). Прямой излуча-тельный переход изображен на рис. 9.7.  [c.314]

Рекомбинация. Электроны в зоне проводимости полупроводника находятся в возбужденном состоянии и, следовательно, имеют конечное время жизни. При встрече они аннигилируют с дырками. Однако вероятность такой рекомбинации очень мала, потому что и электроны, и дырки движутся с большими скоростями и вероятность их нахождения в одном и том же месте пространства в один и тот же момент времени ничтожна. Поэтому главный путь рекомбинации осуществляется посредством захвата электронов (или дырок) примесными атомами. Захваченный электрон (или дырка) удерживается около примесного атома до тех пор, пока не аннигилирует с пролетающей мимо дыркой (или электроном). Этот механизм значительно более эффективен, чем прямая рекомбинация. Тем не менее вероятность рекомбинации посредством захвата также не очень велика и обычно обеспечивает сравнительно большую продолжительность жизни соответствующих носителей. В германии и кремнии продолжительность жизни носителей до рекомбинации имеет порядок 10" с.  [c.355]


Рис. 3.4. Генерация (1) и рекомбинация (2) носителей заряда в полупроводнике Рис. 3.4. Генерация (1) и рекомбинация (2) носителей заряда в полупроводнике
Освещение полупроводника светом не приводит к бесконечному росту концентрации неравновесных носителей заряда, так как по мере роста концентрации свободных носителей и числа свободных мест на примесных уровнях растет вероятность рекомбинации. Наступает момент, когда рекомбинация уравновесит процесс генерации свободных носителей. Избыточная (неравновесная) удельная проводимость, равная разности удельных электрических проводимостей полупроводника при освещении у и в отсутствие освещения уо, называется удельной фотопроводимостью уф  [c.70]

После окончания освещения образца электроны переходят на более низкие энергетические уровни — примесные или в валентную зону. При непрерывном освещении полупроводника устанавливается динамическое равновесие между образующимися дополнительными (неравновесными) носителями и уходящими на нижние уровни, т. е. устанавливается динамическое равновесие между процессами генерации носителей заряда и рекомбинацией их.  [c.276]

Уравнения (4.7) —(4,8) показывают, что причинами изменения концентрации носителей могут быть неодинаковость числа носителей, втекающих (и вытекающих) в элементарный объем полупроводника (тогда dlvJ O), и нарушение равновесия между процессами генерации и рекомбинации носителей. Уравнения (4.9) и (4.10), называемые уравнениями плотности тока, характеризуют причины протекания электрического тока в полупроводнике электрический дрейф под воздействием электрического поля (grad tp= 0) и диффузию носителей при наличии градиента концентрации. Уравнение Пуассона характеризует зависимость изменений в пространстве напряженности электрического поля Е=—gгadф от распределения плотности электрических зарядов pi  [c.156]

Влияние температуры на фотопроводимость. С понижением температуры уменьшается темновая проводимость, служащая фоном, на котором появляется фотопроводимость, а поэтому роль последней возрастает. Кроме того, с понижением температуры увеличивается и сама фотопроводимость, так как с уменьшением концентрации темновых носителей заряда снижается вероятность рекомбинации носителей. Температура влияет и на граничную длину волны (см. рис. 8-7), причем у одних полупроводников она смещается при понижении температуры вправо, а у других — влево. Это объясняется тем, что с понижением температуры ширина запрещенной зоны у одних полупроводников уменьшается, а у других — увеличивается.  [c.247]

Скорость тсрмпч. генерации и рекомбинации носителей в обеднённом слое через глубокие уровни (расположеииые вблизи середины запрещённой зоны) выше по сравнению с теми же процессами в объёме полупроводника (механизм С а — Н о й с а — Ш о к л и). Напр., отношение скоростей термич. генерации в обеднённом слое и объёме порядка WnjHn,T, где п — концентрация основных носителей, W — тол-шина слоя, I — длина диффузии носителей, и — концентрация собственных носителей. В Ge, Si и др. полупроводниках, как прави.т1о, W<.1, но в легированных полупроводниках что делает этот механизм существенным.  [c.448]

МЕЖЗОННЫЕ ПЕРЕХОДЫ — переходы электронов из валентной зоны полупроводника в зону проводимости, сопровождающиеся образованием (генерацией) пары носителей заряда электрон проводимости — дырка обратные М. п. наз. рекомбинацией носителей заряда. Генерационные М. п. могут быть обусловлены тепловым возбуждением, воздействием эл,-магЕ. волн и т. д. Рекомбинационные М. п. могут быть спонтанными и вынужденными (см. Лолу проводники. Рекомбинация носителей заряда), МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ. По природе, характерным внергиям и расстояниял близко к межатомному взаимодействию. Описывается теми же типами потенциалов взаимодействия, что и межатомное взаимодействие. М. в. наиб, существенно в нлот-  [c.88]

Люминесценция может быть вызвана светом (фотолю-жинесценцил) илп электрич. током злектролюминее-ценция). Иа явлении электролюминесценции основана работа большинства полупроводниковых излучателей света (см. Светоизлучающий диод, Рекомбинация носителей заряда в полупроводниках).  [c.43]

Осн. причинами дополнит, потерь, уменьшающих практически достижимые значения кпд, являются отражение части светового потока от поверхности СЭ (коэф. отражения для полупроводников, применяемых в СЭ, составляет ок, 30% и 3—5% при использовании просветляющих покрытий) и рекомбинац. потери, вызванные тем, что часть возбуждённых фотоносителей не доходят до р — п-дерехода, рекомбинирует, а их энергия передаётся решётке полупроводника (см. Рекомбинация носителей заряда). В фотоэлементах с р — п-переходами существенны потери за счёт поверхностной рекомбинации, особенно для носителей, генерирован-  [c.579]

Экспернменгальн14е методы. Существуют 2 осн. способа наблюдения Ц. р. Первый состоит в измерении поглощения эл.-магн. мощности. Второй с1юсоб использует то обстоятельство, что поглощение излучения приводит к возрастанию энергии носителей. Это, в свою очередь, приводит к изменению проводимости ст полупроводника на пост. токе. Зависимость изменения До от со или от Н воспроизводит линию Ц. р. Этот способ имеет то преимущество, что детектором является сам образец. Кроме того, обычно этот способ оказывается более чувствительным, чем измерение поглощения. Однако в тех редких случаях, когда в ггределах резонансной линии возникает смена механизма рассеяния (а), смена механизма рекомбинации носителей (б) или изменение типа проводимости (в), то кривая Да (со) или Аа(Н) в случаях (а) и (б) становится двуг орбой, а в случае ( ) ф-ция Дсг(Я) напоминает закон дисперсии показателя преломления.  [c.432]


V и УФ-чувствительные ПВМС. Основные ограничения на чувствительность ПВ. 1С в УФ-области спектра накладываются возрастанием поглощения света в слоях структуры в подложке, в прозрачном электроде. Большой коэффициент поглощения j и УФ-излучсния приводит к поглощению этого излучения в приповерхностной области полупроводников, характеризуемой высокой скоростью рекомбинации носителей. Это снижает фоточув-ствительность полупроводников в этой области спектра. Кроме того, снижается квантовый выход фотоэффекта из-за появления. новых каналов возбуждения — прежде всего, возб ждения внутренних атомных оболочек.  [c.185]

Рассмотрим растекание носителей, накопленных на границе полупроводника. В этом случае время т необходимо определить как среднее г-ремя пробега носителя до встречи его с носителем противоположного знака и их рекомбинации. Поскольку, однако, все носители геометрически разделены в соответствии с их знаками, то время рекомбинации носителя определенного знака будет ограничиваться скоростью термогенерации носителей противоположного знака в той же точке полупроводника, т. е.  [c.192]

Как собственные, так и лримесные носители заряда в твердых диэлектриках возникают преимущественно из-за термической активации. При этом кроме процесса генерации электронов и дырок происходят процессы их рекомбинации, при которых электрон и дырка взаимно уничтожаются. В диэлектриках и полупроводниках между тепловой генерацией и рекомбинацией носителей устанавливается динамическое равновесие, зависящее от глубины залегания примесных уровней и от температуры. Поэтому носители заряда, образующиеся при термической активации, называют равновесными. Если носители возникают при освещении или облучении диэлектрика, а также в сильном электрическом поле, их называют неравновесными, так как после выключения активирующего фактора их концентрация резко падает.  [c.44]

Работа полупроводникового люминофора происходит следующим образом. Внешний источник, сообщая атому энергию W > AW, переводит электрон из валентной зоны в зону проводимости ), откуда часть электронов переходит на уровень ловушки (2), где может находиться длительное время. Далее возможна рекомбинация — воссоединение захваченного электрона с дыркой (5) — или возвращение электрона под действием теплового движения в зону проводимости [4) с переходом (5) в валентную зону. Переходы 3 и 5 сопровождаются излучением кванта света hf. В некоторых полупроводниках люминесценция обусловлена межпримесной рекомбинацией — переходом электрона от донора к акцептору. В электролюминофорах излучение происходит в результате рекомбинации носителей заряда при инжекции электронов из п- в р-область.  [c.254]

Из известных видов люминесценции (фото-, катодо-, электро-) наибольший практический интерес в полупроводниках Л "В представляет электролюминесценция, когда излучение происходит в результате рекомбинации носителей заряда, инжектированных в р-п-переход при прямом смещении. Полупроводниками А "в охватывается широкий спектральный диапазон от фиолетового до инфракрасного излучения. Спектром излучения можно управлять контролируемым легированием материалов. Соединения Л "в широко используются в качестве рабочих тел твердотельных лазеров.  [c.656]

Электронно-колебательная модель захвата и рекомбинации носителей заряда. Хотя вопросы энергети актов захвата электронов и дырок на объемные дефекты твердбго тела неоднократно обсуждались в литературе, этой проблемой в приложении к поверхностным фазам стали заниматься только в последние годы. Ограничимся, в основном, рассмотрением низкого уройня возбуждения электронной и фононной подсистем поверхностной фазы полупроводника.  [c.255]

Дальнейшие исследования были сосредоточены на изучении диффузии Li, u, Au, Ag, Zn, Ni и Fe. Эти элементы, за исключением лития, также образуют с германием и кремнием, как правило, твердые растворы замещения, но создают в запрещенной зоне глубоколежащие многозарядные, как правило, акцепторные уровни, число которых соответствует разности между числом валентных электронов германия (кремния) и атома примеси (см. гл. 3). Такие глубокие уровни выступают как уровни захвата или рекомбинации носителей тока и играют большую роль в неравновесных процессах, уменьшая время жизни и ускоряя рекомбинацию неосновных носителей тока в полупроводниках. Литий с германием и кремнием образует твердый раствор внедрения и является донором с одним уровнем.  [c.301]

В полупроводниках имеются также примесные уровни, значительно удаленные и от начала зоны проводимости и от конца валентной зоны. Эти глубокие уровни могут быть как донорами, так и акцепторами электронов. Поскольку нх энергия ионизации велика, они не вносят существенного вклада в концентрацию носителей за счет обычной термической ионизации, но могут служить ловушками (такими же, как неглубокие уровни обычных примесей) при компенсации избыточных доноров и акцепторов или же центрами рекомбинации в полупроводниках. Иногда, например при поглощении света, электроны переходят из валентной зоны в зону проводимости, что приводит к избыточной, неравновесной концентрации носителей, электронов и дырок, которые в конечном итоге рекомбинируют. При малых избыточных концентрациях скорость рекомбинации пропорциональна концентрации носителей, и их число убывает во времени по закону ег 1 , где X —константа, называемая врелшВремя жизни при прямой рекомбинации может быть довольно большим вследствие необходимости одновременного выполнения двух законов сохранения энергии и импульса. Поэтому часто рекомбинация протекает с большей скоростью путем захвата носителей одного знака атомами примесей с более глубокими уровнями и последующей рекомбинацией носителями противоположного знака. Примером примесных уровней, которые служат центрами рекомбинации, являются уровни меди и никеля в германии. Процесс рекомбинации чрезвычайно чувствителен к наличию определенных примесей одна часть никеля на миллиард частей германия уменьшает время жизни носителей на один-два порядка.  [c.74]

В качестве краевых условий в моделях полупроводниковых приборов используют зависимости потенциалов на контактах от времеин, принимают значения концентраций носителей на границе между внешним выводом и полупроводником равными равновесным концентрациям Ра и Яо, для границ раздела полупроводника и окисла задаются скоростью поверхностной рекомбинации gs, что определяет величины нормальных к поверхности раздела составляющих плотностей тока Jp и Jn, и т. д.  [c.156]

Поверхностная рекомбинация. Помимо рекомбинации в объеме носители могут рекомбинировать на поверхности полупроводника. Скорость поверхностной рекомбинации S определяется как скорость потока частиц из объема к аоверхности, необходимого для поддержания на ней избыточного числа неравновесных носителей. Скорость s сильно зависит от способа обработки поверхности. Так, для Ge при травлении поверхности в кипящей Н2О2 язЮ см/с, а при шлифовке s 10 см/с и более. Обычно s = 10 -f-10 см/с.  [c.454]


Смотреть страницы где упоминается термин Полупроводники рекомбинация носителей : [c.435]    [c.445]    [c.448]    [c.448]    [c.53]    [c.323]    [c.480]    [c.351]    [c.72]    [c.271]    [c.273]    [c.431]    [c.158]    [c.454]   
Задачи по термодинамике и статистической физике (1974) -- [ c.3 , c.7 , c.16 , c.16 , c.16 , c.19 ]

Физика твердого тела Т.2 (0) -- [ c.222 ]



ПОИСК



Газ-носитель

Неравновесные носители заряда в полупроводниках. Генерация и рекомбинация. Время жизни

Полупроводники

Рекомбинация

Рекомбинация носителей

Экспериментальное исследование захвата и рекомбинации носителей заряда на поверхности полупроводников



© 2025 Mash-xxl.info Реклама на сайте