Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Парамагнитная спиновая волна

Обычно парамагнитные спиновые волны исследуют путем изучения поглощения слабого высокочастотного циркулярно поляризованного электромагнитного поля, распространяющегося перпендикулярно (ось г) пластинке металла толщины Ь. Внешнее постоянное магнитное поле Но направляется также перпендикулярно пластинке. Циркулярно поляризованное магнитное поле  [c.120]

Как уже говорилось, такие спиновые волны были обнаружены на опыте [115]. Это было сделано при исследовании прохождения циклотронных электромагнитных волн через тонкие пленки натрия и калия. В условиях, когда 0) = 2рЯ/л, т. е. частота падающего поля совпадает с частотой прецессии спинов, возникает парамагнитный резонанс. Это сказывается в виде появления максимума прозрачности пленки.  [c.246]


Возможность распространения спиновой волны приводит к появлению дополнительных пиков прозрачности, в зависимости от магнитного поля или частоты, в условиях, когда в металле устанавливается стоячая спиновая волна, т. е. /гО = пя (D—толщина пластинки). При малых п волновые векторы очень малы, так что соответствующие частоты (или поля, если задана частота) мало отличаются от частоты парамагнитного резонанса, т. е. пики спиновых волн близки к пику парамагнитного резонанса.  [c.246]

При первом взгляде на задачу возникает искушение рассматривать тепловые флуктуации локальной намагниченности, скажем, в ферромагнитном кристалле как форму ячеистого беспорядка, т. е. как нечто вроде разреженного газа перевернутых спинов. В этом случае, однако, модель Изинга может вызвать особенно сильную путаницу при попытке разобраться в сути дела (рис. 1.4,в). Векторный характер спиновой переменной 8 дает себя знать вместо полных переворотов спина в некоторых узлах мы имеем локально коррелированные изменения ориентации спина в довольно больших областях пространства (рис. 1.4, б). Возбуждение почти независимых спиновых волн приводит, следовательно, к появлению совершенно иного типа беспорядка, который будет рассмотрен в 1.8. При увеличении температуры этот беспорядок усиливается, причем возбуждаются все более и более короткие волны. Задача о математическом описании перехода из этой фазы в фазу парамагнитного беспорядка (см., например, рис. 1.4, а) через режим критических флуктуаций ( 5.11) представляет собой пробный камень статистической механики кооперативных явлений.  [c.22]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Парамагнитная спиновая волна 119 Параметрическая люминесценция 78 Параметр неадиабатичности 241 Пнппардовский резонанс 208 Плазменная волна 90  [c.638]

Ниже критич. темп-ры Т , (наир., Кюри точка для ферромагнетика или Нееля точки для антиферромагнетика) динамика намагниченности носит преимущественно не диффузионный, а волновой характер (см. Спиновые волны). Однако в условиях сильного затухания и малого времени жизни магпонов (Т близко к Т ) волновая динамика намагниченности сменяется диффузионной, что проявляется, в частности, в виде т. н. центрального (квазиупругого) пика в сечении критнч, магн, рассеяния нейтронов. Выше критич. темп-ры С. д. становится основным механизмом пространственного выравнивания неоднородной намагниченности. Особенности С. д. в парамагнитной области (Т > Г ) магнитоупорядоченных веществ по сравнению со С. д. в обычных парамагнетиках проявляется в критическом замедлении (аномальное возрастание вблизи времён магнитной релаксации). Аналогичными свойствами обладают н др. кинетич. и резонансные характеристики (напр., затухание ультразвука в магнетиках, ширина линии ЭПР и др.).  [c.632]

Спиновые волны в парамагнитных металлах и газах. В парамагнитных металлах С. в. предсказаны В. П. Силиным в 1960, обнаружены экспериментально в 1967. В немагн, металлах С. в.— колебания спиновой плотности электронов проводимости, обусловленные обменным  [c.640]

ФЕРРОМАГНИТНЫЙ РЕЗОНАНС —резонансное поглощение эл.-магн. энергии ферромагнетиком, один из видов электронного магнитного резонанса в твёрдом теле. От электронного парамагнитного резонанса (ЭПР) Ф. р. отличается тем, что поглощение энергии при Ф. р. на много порядков сильнее и условие резонанса (связь между резонансной частотой перем. поля и величиной пост. магн. поля) существенно зависит от формы образцов. Эти отличия вызваны тем, что Ф. р. является коллективным эффектом элементарные магн. моменты ферромагнетика сильно связаны и поглощение анергии происходит в результате взаимодействия перем. поля с суммарными магн. моментами макроскопич. объё.мов вещества. Поэтому описание Ф. р. возможно в рамках классич. макроскопич. теории. Термин Ф. р. иногда распространяют и на магн. резонанс в ферримагнетиках, поскольку теория Ф. р. применима к одному из типов колебаний намагниченности в ферримагнетиках. Однако резонанс в ферримагнетиках имеет ряд особенностей (см. Ферримагпитиый резонанс). Однородные колебания намагниченности, происходящие при Ф. р., могут рассматриваться как предельный случай элементарных возбуждений магн. системы ферромагнети-К 1—спиновых волн при волновом числе /f O.  [c.306]

Изучение аномалии теплопроводности при фазовых переходах полупроводников из ферромагнитного в парамагнитное состояние представляет интерес в связи с вопросами спин-фоионного взаимодействия и переноса энергии магнонами. В [1—3] была измерена теплопроводность некоторых антиферромагнитных соединений переходных металлов выше и ниже температуры Нееля. На основании полученных результатов авторы пришли к выводу, что теплопроводность, возникаюшая за счет спиновых волн, отсутствует, но наблюдается дополнительное рассеяние фононов вблизи точки перехода в парамагнитное состояние.  [c.359]

В парамагнетиках прохождение Г. подходящей частоты и поляризации в результате спин-фононного взаимодействия может вызвать изменение магн. состояния атомов. Так, Г. с частотой 10 Гц, распространяясь в кристаллах парамагнетиков, помещённых в магн. поле, может привести к избират. пох лощению, т. е. акустическому парамагнитному резонансу (АПР). При помощи АПР оказывается возможным изучать переходы между такими уровнями атомов в парамагнетиках, к-рые явл. запрещёнными для электронного па- рамагнитного резонанса. В магнитО упорядоченных кристаллах (антифер-ро- и ферромагнетиках, ферритах), помимо рассмотренных выше вз-ствий Г. с в-вом, появляются другие, где играют роль магнитоупругие вз-ствия (магнон-фононные вз-ствия). Так, распространение гиперзвук, волны вызывает появление спиновой волны и, наоборот, спиновая волна вызывает появление гиперзвук, волны. Поэтому в общем случае в таких кристаллах распространяются не чисто спиновые или упругие волны, а связ. магнитоупругие волны.  [c.123]


ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР) — резонансное поглощение (излучение) эл.-магн. волн радиочастотного диапазона (10 —10 Гц) парамагнетиками, парамагнетизм к-рых обусловлен электронами. ЭПР—частный случай парамагн. резонанса и более общего явления — магнитного резонанса. Лежит в основе радио-спектроскопич. методов исследования вещества (см. Радиоспектроскопия). Имеет синоним—электронный спиновый резонанс (ЭСР), подчёркивающий важную роль в явлении спинов электронов. Открыт в 1944 Е. К. Завойским (СССР). В качестве парамагн. частиц (в случае конденсированных сред — парамагн. центров), определяющих парамагнетизм, могут выступать электроны, атомы, молекулы, комплексные соединения, дефекты кристалла, если они обладают отличным от нуля магнитным момец>пом. Источником возникновения магн. момента могут служить неспаренный спин или отличный от нуля суммарный сйин (момент кол-ва движения) электронов.  [c.578]

Необходимо еще включить в уравнение (4.41) член, пропорциональный 8 8 , а в уравнение (4.42) —член, пропорциональный . Как только интенсивность волны третьей гармоники достигнет заметной величины, начнется генерация четвертой гармоники и т. д. К счастью, оказывается возможным изменить постоянную распространения ультразвуковой волны путем использования ее взаимодействия с парамагнитными ионами. Спиновые уровни последних могут быть настроены на акустическую частоту с помощью внешнего магнитного поля такая настройка приводит к появлению поглощения и аномальной дисперсии для ультразвуковых волн. Соответствующие эксперименты были выполнены Ширеном в кристалле M.gO с присадкой ионов N1 + или Ре + этим мето-  [c.149]


Смотреть страницы где упоминается термин Парамагнитная спиновая волна : [c.120]    [c.478]    [c.119]    [c.322]    [c.322]    [c.332]    [c.332]    [c.49]    [c.333]   
Теория твёрдого тела (0) -- [ c.119 ]



ПОИСК



Спиновые волны



© 2025 Mash-xxl.info Реклама на сайте