Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводниковые материалы и технология их получения

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ И ТЕХНОЛОГИЯ ИХ ПОЛУЧЕНИЯ  [c.94]

Получение высококачественных полупроводниковых материалов и создание на их основе микроэлектронных приборов привело во второй половине XX в. по сути к революции в технике, поскольку позволило использовать мощные, но миниатюрные вычислительные системы и автоматизацию не только в произ водстве и различных областях человеческой деятельности, но и в быту. Миниатюризация функциональных элементов микроэлектроники и увеличение их производительности требуют все более высокого качества материалов и новых технологий изготовления элементов из них. Эти новые автоматизированные технологии (нанотехнологии) уже не могут работать без оборудования с широким применением микроэлектронных приборов, которые как раз и создаются с использованием этих технологий. Если не принимать во внимание технологии конструкционных материалов и сборку различных механизмов, многие из которых тоже автоматизированы, а также некоторые операции транспортировки и экономические аспекты полной автоматизации, то можно считать, что мы уже живем в том веке, когда механизмы производят сами себя.  [c.646]


Настоящая книга состоит из четырех глав, в которых рассматриваются некоторые перспективные для производства изделий электронной техники полупроводниковые, магнитные, диэлектрические и лазерные материалы. В каждой главе описаны физические процессы, происходящие в конкретных материалах, свойства, основные методы получения и области применения. Особое внимание уделено зависимости свойств материалов от их состава, структуры и технологии получения.  [c.3]

В учебном пособии рассмотрены основы материаловедения, включающие в себя взаимосвязь состава, Строения и механических, электрических, магнитных свойств материалов. Описаны технологии получения и обработки монокристаллов, поликристаллических слитков, аморфных структур, нанокристаллических материалов и композитов, упрочнение металлов и сплавов дисперсными модифицирующими добавками термическая обработка, высокоэнергетические технологии обработки деталей. Показано использование материалов в технике в зависимости от их химического состава, структуры и свойств. Дано описание свойств конструкционных и инструментальных сталей, сплавов алюминия, меди, магнитных, проводниковых, диэлектрических, полупроводниковых и других материалов.  [c.4]

Раньше, а нередко и сейчас, новые полупроводниковые материалы создавались эмпирически. Однако знание природы химической связи, структуры, физико-химических свойств известных материалов и установление взаимосвязи между свойствами и способами их производства позволяют научно обоснованно прогнозировать наличие полупроводниковых свойств у новых материалов и разрабатывать технологию получения этих новых полупроводников с заданными параметрами.  [c.4]

Описать подробно все существующие технологические приемы, используемые в производстве материалов для электронной техники, в одном курсе вряд ли возможно и целесообразно, по крайней мере, из-за довольно быстрого соверщенствования технологии. Сведения о способах получения того или иного конкретного полупроводника можно получить из статей, справочников, монографий и т.д. Однако существуют некоторые общие закономерности технологических процессов производства разных полупроводниковых материалов. Это позволяет объединить способы получения различных полупроводников в типичные технологические методы, выделить наиболее широко используемые и детально их проанализировать.  [c.5]

Важнейшей задачей технологии полупроводниковых материалов, как уже неоднократно отмечалось, является получение их в форме совершенных монокристаллов с определенной кристаллографической ориентацией и с минимальным или контролируемым и нужным образом распределенным количеством примесей. Поэтому так важно изучение влияния условий выращивания на дефектность получаемых монокристаллов.  [c.239]


Широко распространено мнение, что выращивание монокристаллов из газообразной фазы не имеет большого практического значения ввиду малых скоростей роста, присущих этому методу. Действительно, скорость роста монокристаллов из газообразной фазы обычно равна сотым долям мм/ч, что на несколько порядков ниже, чем при вытягивании кристаллов из расплава. Рост из газообразной фазы применяется в основном для выращивания тонких эпитаксиальных пленок, используемых в технологии полупроводниковых приборов, и для получения небольших монокристаллов тугоплавких материалов, а также полупроводниковых соединений, которые плавятся с разложением. Кроме того, поскольку высокопроизводительные методы выращивания монокристаллов из расплавов не всегда обеспечивают высокую однородность их свойств, то для получения особо качественных небольших кристаллов полупроводников используются методы выращивания из газообразной фазы. Эти методы, естественно, не устраняют все причины, приводящие к дефектности кристаллов. Процессы выращивания монокристаллов из газообразной фазы тоже весьма чувствительны к колебаниям внешних условий и составу питающей фазы. Однако влияние этих колебаний значительно сглажено благодаря малым скоростям роста, что способствуют приближению к более равновесным условиям роста.  [c.250]

Том 2 монографии американских специалистов X. Кейси и М. Паниша посвящен практической реализации гетсролазеров, их эксплуатационным параметрам, а также используемым полупроводниковым материалам и технологии получения гетероструктур.  [c.4]

Чческих, тепловых и физико-химических характеристиках конструкционных и электротехнических материалов в связи с их строением и внешними т условиями. Рассмотрены технологии их получения, переработки, эксплуатации, утилизоции, контроля и измерения параметров. Изложены основы металловедения и способы обработки металлов приведены области ЕЕ применения электротехнических материалов и их классификация, осно- 1Р вы физики диэлектрических материалов рос смотрены свойства, техно- BL логии получения и применение газообразных, жидких и твердых электро-Л А, изоляционных материалов, проводниковых, полупроводниковых и магнит-ных материалов.  [c.336]

Оно осуществляется методом диффузии примеси из внещней газовой, жидкой или твердой фаз, методом радиационного легирования и методом ионной имплантации. Метод диффузии в технологии производства объемных легированных материалов не получил распространения из-за малых скоростей диффузии в кристаллах. Тем не менее сами процессы диффузии играют больщую роль в технологии получения и обработки полупроводниковых материалов и создании приборов на их основе. Рассмотрению этих процессов посвящена гл. 8.  [c.264]

Очень интересна технология получения ФЭП в виде тончайших пленок из аморфного кремния. Хотя они имеют невысокую эффективность (КПД б—10 %), низкий расход полупроводниковых материалов и автоматизированное производство позволяют снизить их стоимость до 1 дол. за 1 Вт. Японская национальная фотоэлектрическая программа Солнечное сияние предусматривает ускоренный рост производства солнечных элементов из аморфного кремния. В Японип уже получены их образцы размером 100x100 мм с 17  [c.17]

В книге описаны свойства, методы получения и области применения новых материалов электронной техники полупроводниковых, магнитных, днэлектриче ских и лазерных. Показана связь между составом, структурой, физическими и химическими свойствами материалов, технологией их производства и параметра ми изготовляемых приборов.  [c.2]

Успешное решение этой задачи возможно лишь при наличии полупроводниковых материалов, сочетающих в себе нагревостой-кость и высокие электрофизические характеристики. Из таких материалов наиболее перспективны полупроводники с широкой запрещенной зоной — фосфид галлия и карбид кремния. Получение этих материалов связано с рядом технических трудностей, обусловленных высокой температурой плавления и невозможностью получения расплава при нормальном давлении. Поэтому фосфид галлия и карбид кремния в виде монокристаллов полупроводниковой чистоты известны сравнительно недавно. Тем не менее за последнее десятилетие достигнуты значительные успехи в технологии получения этих материалов, в разработке полупроводниковых приборов на их основе.  [c.45]


Все перечисленное стало возможным лишь благодаря вьщающимся достижениям в развитии технологии молекулярно-пучковой и МОС-гид-ридной эпитаксии, обеспечившим возможность синтеза высококачественных квантоворазмерных композиций широкого круга полупроводниковых материалов. Однако по существу развитие технологии и материаловедения наноструктур лишь только начинается. С материаловедческих позиций наноструктуры являются весьма специфическими объектами, свойства которых в значительной степени определяются свойствами их поверхности и явлениями, разыгрывающимися на границах раздела фаз. Все это определяет специфику межфазных взаимодействий и особенностей поведения примесей и структурных дефектов в наноразмерных многофазных композициях. Ключ к получению недеградирующих наноструктур с контролируемыми свойствами лежит в детальном исследовании всех этих явлений.  [c.112]

Указанные виды энергетического воздействия на материалы осуществляются при давлениях от тысячных долей атмосферного до 100 атм и выше. Технологическая обработка веществ может проводиться в окислительной, восстановительной, нейтральной или химически активной среде, создаваемой в рабочих пространствах технологического оборудования. Столь широкие электротехнологические возможности, позволяют создавать многочисленные материалы (кристаллические, аморфные, наноматериалы и др.), существенно различающиеся по своим эксплуатационным свойствам (механические свойства, коррозионная стойкость, кислото- и жаростойкость, магнитные, электропроводящие и диэлектрические, полупроводниковые и специальные свойства, теплоизоляционные низко- и высокотемпературные и т.д.). Рассматривать подробно каждую из групп материалов (по их назначению) не представляется возможным. По каждой из этих групп имеется специальная литература. В предлагаемой книге внимание в первую очередь уделено фундаментальным основам материаловедения и технологиям конструкционных материалов в связи с тем, что современное материаловедение направлено получение материалов с заданными характеристиками и служит базой для наукоемких технологий XXI века.  [c.6]

Поразительные возможности современной полупроводниковой электроники и особенно микроэлектроники реализуются только по мере разработки и освоения выпуска полупроводниковых материалов с разнообразными физическими свойствами. Эти материалы позволили создать на их основе миниатюрные усилители и генераторы электрических сигналов, работающие в широком диапазоне частот интегральные микросхемы для современных компьютеров преобразователи одного вида энергии в другой полупроводниковые светодиоды, лазеры и фотоприемники, работающие в ИК- и видимом диапазонах (полупроводниковые лазеры и фотоприемники — составляющие элементной базы волоконно-оптических линий связи) детекторы излучений и частиц магнитные, пьезо-, сегне-тоэлектрические и многие другие устройства. В то же время открытие новых явлений и потребность создания более совершенных приборов для научных исследований стимулируют поиск, разработку и освоение производства новых материалов с требуемыми свойствами. Между физикой и технологией полупроводников существует тесная взаимосвязь, и часто оказывается, что получение новых физических результатов становится невозможным без постоянного прогресса в технологии.  [c.3]

Новейшее развитие радиоэлектроники и широкое использование ее в различных областях техники предусматривают самое широкое применение полупроводниковых металлических материалов и, в частности, германия и кремния. Возможность получения совершенных полупроводниковых приборов, отвечающих запросам современной техники, О Пределяется не только исходными электрическими свойствами материала полупроводников, но в большей степени зависит также и от их поверхностных свойств. Например, выбранная технология обработки поверхности при изготовлении полузфоводниковых приборов (химическое травление), а также после-лующпе ноздействие на поверхность полупроводникового прибора окружающей атмосферы заметно изменяют и его электрические свойства. Успешное разрешение вопроса о получении полупроводников с заданными стабильными свойствами в значительное мере определяется уточнением роли физико-химического коррозионного воздействия внешней среды (травильного раствора или атмосферы) на полупроводниковые свойства этих материалов.  [c.584]


Смотреть страницы где упоминается термин Полупроводниковые материалы и технология их получения : [c.4]    [c.5]    [c.185]   
Смотреть главы в:

Электрорадиоматериалы  -> Полупроводниковые материалы и технология их получения



ПОИСК



Л полупроводниковый

Материалы и технологии

Материалы полупроводниковые

Полупроводниковые материалы ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ



© 2025 Mash-xxl.info Реклама на сайте