Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты в полупроводниковых материалах

Дефекты в полупроводниковых материалах  [c.87]

Глава 3. Дефекты в полупроводниковых материалах  [c.88]

Диффузия в полупроводниковых материалах имеет ряд особенностей. Важнейшей из этих особенностей является наличие в полупроводниках электрически активных примесей и собственных дефектов, прежде всего вакансий. Кулоновское взаимодействие между ними изменяет подвижность, концентрацию и характер распределения дефектов и соответственно условия и скорость диффузии. Важно также, что влияние примесей в полупроводниках проявляется при весьма малых концентрациях. Кроме того, на процессы диффузии в полупроводниках сказывается и низкая компактность решеток последних.  [c.309]


В плане отражены проблемные вопросы совершенствования производства стали, цветных металлов и полупроводниковых материалов, порошковой металлургии, защиты металлов и сплавов от коррозии Применение пульсирующего дутья при производстве стали , Проблемы совмещения горячей деформации и термической обработки стали , Процессы жидкостной экстракции в цветной металлургии , Безокислительный нагрев редких металлов и сплавов в вакууме , Структурные дефекты в эпитаксиальных слоях полупроводников , Феноменология спекания , Коррозионная усталость металлов , Защита от коррозии силикатами .  [c.3]

Изделия и конструкции из диэлектриков и полупроводниковых материалов могут иметь в себе дефекты следующих типов  [c.228]

Однако такие системы не позволяют изучать локальные неоднородности в объеме исследуемого образца из-за значительного усреднения несовершенств (неоднородностей поверхности и толщины дефектов структуры и др.) по толщине исследуемого образца. Разрешающая способность в плоскости, перпендикулярной лазерному лучу, ограничивается разрешающей способностью видикона. Вместе с тем при исследовании полупроводниковых материалов, интегральных схем, резко неоднородных слоистых структур, полупроводниковых пленок на подложке и т. д. возникает необходимость изучения характера распределения несовершенств именно на определенной глубине объекта.  [c.181]

Широкое применение Ш-нитридов в качестве материалов полупроводниковой техники, электронной промышленности, химического приборостроения, для изготовления конструкционной керамики общего и специального назначения, в производстве твердых, износостойких материалов, абразивов, защитных покрытий и т. д. [1—4] обусловило развитие новых методов их получения (обзоры [3—18]), которые позволяют эффективно регулировать функциональные свойства нитридов путем направленной модификации их структурного и химического состояний. Синтезируемые при этом системы (в том числе в неравновесных условиях — например, в виде тонких пленок, покрытий, гетероструктур [12—14, 17,18]), включают большое число разнообразных дефектов, отличающих характеристики получаемого материала от свойств идеального кристалла. Очевидна роль дефектов в формировании эксплуатационных параметров многокомпонентных нитридных систем — керамик, композитов [2, 3, 9,16].  [c.34]

Для исследования структуры полупроводников и некоторых минералов используют микроскопы МИК-3 и МИК-4, в которых создается инфракрасное излучение ( (, = 0,75— 1,2 мкм). В этом излучении значительная группа полупроводниковых материалов, например кремния, арсенида галлия и др., прозрачна. Поэтому можно выявить наличие в структуре различных включений газовые пузыри и дефекты структуры и т. п., поскольку они обладают другим коэффициентом преломления. Можно также при ис-  [c.71]


Если разница между уровнями энергии заполненной зоны и зоны проводимости невелика (ширина запрещенной зоны мала), то для перехода электронов в зону проводимости требуется сравнительно небольшое возбуждение их, например, за счет усиления теплового движения атомов при повышении температуры. Такой материал будет полупроводником (рис. 1-2, б). Для чистых полупроводниковых материалов ширина запрещенной зоны не более 3,5 В . При более широкой запрещенной зоне теплового возбуждения уже недостаточно для перевода электронов из заполненной зоны в зону проводимости, что и имеет место у диэлектриков (рис. 1-2, в). В них переход заметного числа электронов в зону проводимости — случайное явление, например за счет каких-либо дефектов структуры.  [c.8]

Минимально обнаруживаемый дефект достигает порядка 0,1 мм в диаметре. Применение металлического вращающегося зеркала увеличивает скорость сканирования в 4 раза по сравнению со стеклянным зеркалом. Возможно контролирование поверхности материала, двигающегося со скоростью свыше 15 м/с. Сканирующие лазерные системы бегущего луча могут также использоваться для получения изображения объектов контроля. Схема лазерного сканирующего инфракрасного микроскопа для контроля внутренних дефектов полупроводниковых материалов с механическим сканированием объекта контроля и неподвижным лучом лазера отличается низким быстродействием, но имеет высокую разрешающую способность. Схема с системой сканирующих зеркал отличается большим быстродействием (до 50 кад/с при 200. .. 400 строках разложения телевизионного изображения), однако наличие полевых аберраций оптической системы приводит в этом случае к снижению пространственного разрешения.  [c.509]

Дальнейшее повышение частоты до 50... 100 МГц и даже единиц гигагерц позволяет решать такие задачи, как выявление очень мелких дефектов (50... 100 мкм), в том числе микропористости в металлах и керамике, исследование тонкой кристаллической структуры металлов, обнаружение неоднородностей в оптическом стекле с неотшлифованными (непрозрачными) поверхностями, контроль размеров и качества соединения элементов композиционных материалов, тонких многослойных конструкций, поиск дефектов в полупроводниковых элементах, исследование поведения дислокаций в кристаллах. Контролируемые материалы должны обладать малым затуханием ультразвука на соответствующей частоте или приходится контролировать только поверхностные слои объектов (1. ..2 мм).  [c.266]

Преимущественная область применения методов и техники СВЧ — это контроль полуфабрикатов, изделий и конструкций из диэлектрических, композитных, ферритовых и полупроводниковых материалов, в которых радиоволны распространяются. От металлических структур радиоволны полностью отражаются, поэтому их применение возможно только для контроля геометрических параметров и поверхностных дефектов, а в случае толщиноме-трии металлических лент, листов, проката требуется двустороннее располо-  [c.205]

Общие представления. Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения. Кроме того, роль примесей играют всевозможные дефекты кристаллической решетки пустые узлы, атомы или ионы, оказавшиеся в междоузлиях решетки, дислокации или сдвиги, возникающие при пластической деформации кристалла, микротре-дины и т. д. (стр. 12). Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях — примесями внедрения.  [c.233]


Всем видам искусственного и природного графита свойственны различные устойчивые дефекты структуры. В зависимости от степени регулярности и характера дефектов в весьма широком диапазоне изменяются механические, теплофизические, полупроводниковые и другие практически важные свойства графитовых материалов. Дополнительное разнообразие вносят гетероатомы, входящие в углеродные материалы либо в составе функциональных группировок на призматических гранях кристаллов графита, либо в форме соединений, внедренных в межплоскостное пространство, либо в виде механических примесей.  [c.10]

Один из вариантов реализации метода ИК интроскопии заключается в просвечивании объектов исследования ИК излучением и визуализации прошедшего через объект излучения с помощью электронно-оптического преобразователя или телевизионной системы [40, 226]. Примером подобного прибора является микроскоп МИК-1, позволяющий осуществлять видение в таких полупроводниковых материалах, как Si и GaAs, выявлением дефектов в объеме полупроводника. Однако использование в качестве источника излучения широкополосных тепловых излучателей значительно ухудшает качество изображения и затрудняет количественную интерпретацию получаемой информации.  [c.181]

Все перечисленное стало возможным лишь благодаря вьщающимся достижениям в развитии технологии молекулярно-пучковой и МОС-гид-ридной эпитаксии, обеспечившим возможность синтеза высококачественных квантоворазмерных композиций широкого круга полупроводниковых материалов. Однако по существу развитие технологии и материаловедения наноструктур лишь только начинается. С материаловедческих позиций наноструктуры являются весьма специфическими объектами, свойства которых в значительной степени определяются свойствами их поверхности и явлениями, разыгрывающимися на границах раздела фаз. Все это определяет специфику межфазных взаимодействий и особенностей поведения примесей и структурных дефектов в наноразмерных многофазных композициях. Ключ к получению недеградирующих наноструктур с контролируемыми свойствами лежит в детальном исследовании всех этих явлений.  [c.112]

Однако существенным недостатком указанных работ, по нашему мнению, является тот факт, что при этом не обращается внимание на низкотемпературный источник образования данного типа дефектов. Хотя разрушение, как уже упоминалось, очень часто происходит именно при низкотемпературной обработке или после ее проведешя (скрайбирование, резка, шлифовка, полировка, термокомпрессия контактов и др.), все авторы, как правило, считают причиной его именно высокотемпературные процессы — режим выращивания, отжиги и пр. Не отрицая важную роль этих процессов в природе появления данных дефектов, однако необходимо учитывать тот факт, что именно силовые низкотемпературные воздействия (особенно циклические - резка, шлифовка, полировка) могут, во-первых, в существенной мере трансформировать спектр ростовых и высокотемпературных кластеров (увеличивать, например, в размерах один тип дефектов и уменьшать другой) и, во-вторых, создавать дополнительно свой чисто деформационный спектр, который в ряде случаев в зависимости от технологических режимов низкотемпературной обработки может даже существенно превосходить по своему отрицательному влиянию на механические и электрические свойства материала спектр исходных дефектов в материале. Таким образом, для решения указанной проблемы необходимо учитывать не только высокотемпературный канал возникновения данных дефектов, но и низкотемпературный, на который, к сожалению, в настоящее время не обращается серьезного внимания. Именно с учетом этого фактора необходимо выбирать оптимальные режимы низкотемпературной обработки полупроводниковых материалов и особенно связанные с циклическим силовым воздействием [368- 371].  [c.246]

Если имеется несколько типов дефектов, энергетические уровни которых находятся в запрещенной зоне на разной г,чубине, на зависимости j L ) обнаруживаются несколько вертикальных участков, каждый из которых позволяет определить как концентрацию, так и глубину залегания соответствующих уровней. Если же энергетические уровни распределены в некотором интервале в запрещенной зоне, то участок 3 на рис. 2.3,а будет иметь вид не вертикальной, а пологой линии, по углу наклона которой можно найти функцию распределения уровней прилипания по энергиям. Данные об энергетических характеристиках дефектов важны при разработке новых диэлектрических и полупроводниковых материалов, предназначенных для использования в приборах электронной техники. Описанная выше методика по сравнительно несложны.м электрическим измерениям позволяет судить о микроскопической структуре кристаллов [9].  [c.49]

Полупроводники и их соединения в промышленности применяются в виде монокристаллов. Основные требования, предъявляемые к полупроводниковым монокристаллам— высокая чистота п совершенство кристаллической решетки. Наиболее важные физические свойства полупроводника определяются количеством содержащихся в нем посторонних атомов. Различие концентрации пх в объеме кристалла, предпазначенпого для изготов.тенпя полупроводниковых приборов, приводит к значительно.му различию параметров этих приборов. Содержащиеся в монокристалле структурные дефекты также ухудшают параметры полупроводника. Поэтому важной задачей технологии полупроводниковых материалов является выращивание нх в виде совершенных монокристаллов с определенной кристаллографической ориентацией и с мини.мальным, притом равномерным распределением по объему таких распространенных дефектов, как дислокации.  [c.245]


Смотреть страницы где упоминается термин Дефекты в полупроводниковых материалах : [c.312]    [c.164]    [c.42]    [c.42]    [c.47]    [c.6]   
Смотреть главы в:

Основы материаловедения и технологии полупроводников  -> Дефекты в полупроводниковых материалах



ПОИСК



Дефекты материала

Л полупроводниковый

Материалы полупроводниковые

Полупроводниковые материалы ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ



© 2025 Mash-xxl.info Реклама на сайте