Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод контроля импульсно-резонансный

Один из перспективных способов оценки структуры материала — анализ спектра донных сигналов (спектроскопический метод). Частота заполнения ультразвуковых импульсов меняется от посылки к посылке, при этом по амплитуде определяется область рэлеевского рассеяния. Влияние величины зерна на затухание усиливается вследствие многократного прохождения ультразвуковых волн через границы зерен. Для определения величины зерна также применяют резонансные методы, особенно иммерсионный. Например, при контроле импульсно-резонансным способом затухание определяют по отношению амплитуды колебаний в стенке изделия на резонансной частоте к амплитуде колебаний при отсутствии резонансных явлений.  [c.282]


Рис. 80. Схема импульсно-резонансного метода ультразвукового контроля качества паяных соединений трубопроводов Рис. 80. Схема импульсно-резонансного <a href="/info/272817">метода ультразвукового контроля качества</a> <a href="/info/2407">паяных соединений</a> трубопроводов
Основное назначение акустических приборов для измерения геометрических размеров — измерение толщины изделий. Для этой цели используют эхо, локальный резонансный методы контроля и (в редких случаях, при двустороннем доступе) теневой метод. Поскольку резонансные толщиномеры в настоящее время применяют редко, ниже основное внимание уделено импульсным приборам, работающим на основе эхо-метода. Рассмотрены лишь принципиальные вопросы измерения толщины с учетом недавно вышедших книг [41, 48.  [c.220]

Для контроля дефектов участков изделий, находящихся в труднодоступных местах, перспективен метод голографической эндоскопии. В отличие от традиционных способов эндоскопии с помощью волоконно-оптических элементов (ВОЭ) здесь появляется возможность получения объемных изображений внутренних полостей изделий при углах обзора, близких к предельным. Для систем голографической эндоскопии разработаны специальные ВОЭ, обеспечивающие малые потери лазерного излучения и сохранение его когерентности. Применение лазеров в эндоскопии позволило также использовать эффект квантового усиления света с помощью ВОЭ из оптически активных материалов для резкого (в 10 —10 раз) увеличения яркости изображения, улучшения его контрастности. Накачка ВОЭ производится при этом с помощью одиночных импульсных ламп, а объект освещается лазерным светом с длиной волны, соответствующей резонансной частоте световодов..  [c.99]

Резонансный метод пригоден для контроля изделий с относительно гладкими поверхностями. Изменение толщины в зоне измерения не должно превышать 8 %, причем измеряется средняя толщина, а не наибольшее утонение. Это определяет пригодность контактных резонансных толщиномеров как приборов группы А. Однако в контактном варианте обнаруживается ряд недостатков метода, отмеченных в подразд. 2.4, поэтому резонансные контактные толщиномеры, широко распространенные в 50—60-х годах, с развитием импульсной техники оказались неконкурентоспособными и были вытеснены импульсными толщиномерами.  [c.400]


При изготовлении и эксплуатации оборудования котлов, трубопроводов и сосудов в некоторых случаях (при гибке, в процессе протекания ползучести, язвенной коррозии, эрозионного износа) наблюдается уменьшение толщины стенки изделия по сравнению с расчетной толщиной. Для решения вопросов по надежности и безопасной эксплуатации оборудования необходима точная информация о реальной толщине стенки. Для контроля толщины стенки изделия применяют два метода ультразвукового контроля эхо-импульсный и резонансный [22, 26J.  [c.128]

Ультразвуковая дефектоскопия основана на свойстве ультразвуковых колебаний (волн) распространяться в однородном твердом теле и на его плоских и кривых поверхностях в виде лучей прямолинейно и отражаться от границ тела или нарушений сплошности, обладающих другими акустическими свойствами (трещин, раковин, расслоений, коррозии и т. п.). Этот метод позволяет выявить мелкие дефекты до 1 мм. Ультразвуковая дефектоскопия может осуществляться следующими способами теневым-ультразвуковые колебания (УЗК) вводятся в деталь с одной стороны, а принимаются с другой резонансным - основан на измерении режима работы излучающего УЗК пьезоэлемента при изменении нагрузки на него в момент возникновения стоячих волн в контролируемом материале импульсного э.га - метода, основанного на посылке в контролируемую деталь коротких импульсов высокочастотных колебаний и регистрация интенсивности и времени прихода эхо-сигналов, отраженных от дефектов или границ детали. Для ультразвукового контроля используют дефектоскопы УДМ-3, УДЦ-100, УДЦ-  [c.241]

Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. Контактный резонансный толщиномер, принцип действия которого показан на рис. 24, б, в 60-х годах XX в. был основным средством толщинометрии. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок тонких труб лучший результат дает иммерсионный резонансный толщиномер.  [c.215]

В технике УЗ-вая активная локация используется для измерения и контроля уровней жидкостей и сыпучих тел в закрытых ёмкостях (уровнемеры), для определения размеров изделий толщиномеры) в последнем случае наряду с импульсными применяются и резонансные методы. Рабочие частоты составляют при этом десятки, иногда сотни кГц, выбор частоты определяется условиями измерений и требуемой точностью.  [c.18]

Пример расшифровки. Если частотная кривая эхо-импульса имеет в сравнении с эхо-импульсом от задней стенки регулярные максимумы и минимумы, то можно сделать вывод о наличии интерференции либо дефект состоит из двух различных отражающих точек (двух пор), либо на его гладкой поверхности могут возбуждаться волны Рэлея, которые на своем пути туда и обратно при некоторых частотах могут складываться, а при других частотах — гаситься. Такие случаи довольно редки. Но все же частотный анализ эффективен при некоторых способах контроля прочности сцепления (глава 29). Не слишком короткий импульс при многократных отражениях изменяет свой спектр, если изменяется заданное состояние сцепления (соединения), т. е. при отсутствии сцепления или плохом его качестве. Как раз в последнем случае такой метод часто является единственно возможным. Впрочем, многие применения частотного анализа могут осуществляться не только с эхо-импульсным дефектоскопом и частотным анализатором, но и с резонансным измерителем толщины стенки, как это практиковалось прежде (раздел 11.3.1).  [c.396]

Теневой метод применяют в основном для контроля проката малой и средней толщины, некоторых резиновых изделий (покрышек колес), исследования упругих свойств стеклопластиков, бетона и т.п. Он применим лишь ири двустороннем доступе к изделию. Там, где это условие не выполняется, может быть использован зеркально-теневой (для контроля железнодорожных рельсов) или резонансный метод. Последний применяют в основном для измерения толщины тонкостенных труб и сосудов. Конечная длительность импульсов ограничивает применение импульсного эхо-метода, создавая зону нечувствительности ( мертвую зону ) вблизи поверхности, с которой контактирует искатель. Резонансный метод не имеет этого недостатка.  [c.213]


К неразрушающим методам контроля относят визуальный осмотр, простукивание, тепловой, оптический, электрический, радиоволновый, радиационный, контроль проникающими веществами, ультразвуковой контроль. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в клеевом шве. По способу выявления дефектов среди методов ультразвукового контроля выделяют теневой, эхо-импульсный, импедансный, резонансный, велосимметрический, метод акустической эмиссии. Для реализации этих методов разработана соответствующая аппаратура (см. раздел 8). При контроле клееных сотовых конструкций с сотами из алюминиевого сплава и обшивками из ПКМ целесообразно применять несколько методов [100]. Акустический метод, например, с использованием импедансных дефектоскопов ИД-91М и АД-42И с частотной и амплитудной регистрацией колебаний соответственно эффективен для обнаружения отслоений сотового заполнителя от обшивки, а радиографический — для выявления повреждений сотового заполнителя и обшивки, а также для фиксирования мест заливки в соты пасты.  [c.537]

В первой области изменение амплитуды сигнала на толщинах, кратных четверти длины волны УЗК в металле, составляет —20 дБ. Это более чем в 3 раза превышает изменение амплитуды сигнала вследствие нестабильности акустического контакта ( 6 дБ). Для соединений таких толщин предложен импульсно-резонансный метод контроля. В этом методе угол падения УЗК, стрелу искателя и частоту УЗК выбирают таким образом, чтобы максимум амплитуды сигнала был на непропае, а минимум —на качественном соединении. Тогда, используя схему АСД ультразвукового дефектоскопа, нетрудно автоматически зарегистрировать наличие непропая (рис. 80).  [c.161]

Импедансный метод разработан советским учер ым Ю. В. Ланге в 1958 году. Он основан на использовании зависимости полного механического сопротивления (импеданса) контролируемого изделия от качества соединения отдельных его элементов между собой. Различия в физических свойствах как самих материалов, так и применяемых клеев создают значительные трудности в выявлении дефектов уже известными методами неразрушающего контроля (теневым, импульсным, резонансным).  [c.105]

Существуют два основных типа установок для ультразвукового контроля. При резонансном. испытании используют излучение с переменной частотой. При достижении собственной частоты, соответствующей толщине материала, амплитуда колебаний резко возрастает, что отражается на экране осциллографа. Резонансный метод применяют главным образом для измерения толщины. При импульсном эхо-методе в материал вводят им- , / пульсы постоянной частоты длительностью в доли с-екунды. Волна проходит через материал и энергия, отраженная от дефекта или задней поверхности, падает на преобразователь. Затем преобразователь посылает другой импульс и воспринимает отраженный.  [c.265]

Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. Контактный резонансный толщиномер, принцип действия которого показан на рис. 2.5, в, в 60-х годах был основным средством толщино-метрии. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок труб выпускают иммерсионные резонансные толщиномеры. Некоторыми преимуществами перед таким способом измерения толщины обладает локальный метод свободных колебаний (метод предеф). Главное преимущество заключается в возможности изменения угла падения ультразвука на трубу при сохранении точности измерений. Это упрощает конструкцию протяжного устройства.  [c.102]

В большинстве случаев этот метод применяют для определения качества отливок несложной формы. Однако использование для ввода ультразвуковых колебаний специальных искательных головок с контактными поверхностями, выполненными по форме контролируемого участка детали, позволяет применять этот метод и для контроля отливок сложной конфигурации с грубой, шероховатой поверхностью. Особенно эффективен этот метод в условиях эксплуатации литтлх деталей, так как позволяет обнаруживать дефекты (усталостные трещины и др.) на ранних стадиях их образования без разбора узла машины или прибора. Наиболее часто для контроля качества отливок применяют теневой, резонансный и импульсный (эхо-метод) методы ультразвуковой дефектоскопии.  [c.496]

Сплошность сцепления. На заводах-изготовителях для контроля качества гомогенной освинцовки используют переносные и стационарные рентгеновские установки. Контроль осуществляют как на стадии нанесения гомогенной освинцовки на поверхность стального листа, так и покрытия аппарата. Контроль проводят выборочно (отдельных участков) или всей поверхности. В условиях монтажной площадки для контроля сплощности сцепления щироко используют ультразвуковой метод. Его часто применяют также для определения толщины покрытия. Испытания проводят как импульсными, так и резонансными дефектоскопами. Сигналы фиксируются ло шкале прибора или на слух с использованием наушников. При хорошем сцеплении не происходит отражения сигналов от поверхности раздела сталь — свинец. Наличие сильных сигналов показывает на полное отсутствие связи обычно это имеет место, если площадь отслоения превышает размер головки прибора. При меньших размерах дефектов поступают слабые сигналы. Контур отслоения покрытия легко выявляется с помощью прибора. Испытания проводят с наружной стороны корпуса. Поверхность должна быть чистой от сварочных брызг, окалины, глубоких пор, трещин и других дефектов. Для обеспечения акустического контакта между искательной головкой и металлом его поверхность тщательно протирают ветошью и на нее наносят слой масла или вазелина.  [c.279]


Контроль можно проводить эхо-импульсным или иммерсионным резонансным методом. Даже небольшие изменения скорости ультразвуковых волн в промежуточной среде (например, от температуры) могут привести к заметной пофешности измерения. Поэтому в систему конфОля вводят элекфонный блок со второй парой преобразователей, между которыми устанавливают изделие известного размера. Сигнал от второго элекфон-ного блока используют для корректировки результатов  [c.286]

При контроле двухслойных листовых соединений наибольшее распространение получили ультразвуковые резонансный, эхоимпульсный и теневой методы, применяемые в ручном и механизированном вариантах. Первый метод применяют для определения когезионных свойств клееного соединения, т. е. для оценки его прочности [25]. Два других метода позволяют определять лишь места отсутствия клея — непроклеи. Частоту ультразвуковых колебаний выбирают в зависимости от толщины склеиваемых деталей, а также от акустических свойств их материала и клеевого слоя. На той же частоте теневым методом можно контролировать соединения листов в 2—3 раза более толстых, чем при контроле эхо-импульсным методом.  [c.294]

Специфический вид помех при теневом методе связан с возникновением стоячих волн и других резонансных явлений в объекте контроля или в промежуточных слоях, резко изменяющих прохождение ультразвука через различные контролируемые участки, немного отличающиеся по толщине. Наиболее эффективным способом устранения помех от резонансных явлений — использование импульсного режима излучения. Длительность импульса т должна быть меньше времени пробега ультразвука в объекте контроля в прямом и обратном направлениях х<2х1с, где X — толщина объекта контроля. При выполнении этого условия импульсы, прошедшие непосредственно через объект и испытавшие в нем многократные отражения, приходят к приемнику в разные интервалы времени и не интерферируют между собой. Чтобы исключить возникновение резонансных явлений в промежуточных слоях, для них также необходимо выполнить подобные условия.  [c.199]


Смотреть страницы где упоминается термин Метод контроля импульсно-резонансный : [c.287]    [c.111]    [c.84]   
Неразрушающие методы контроля сварных соединений (1976) -- [ c.161 ]



ПОИСК



V импульсная

Контроль импульсный

Метод импульсный

Метод резонансный

Методы контроля

Резонансные



© 2025 Mash-xxl.info Реклама на сайте