Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионизация атома

Электрохимическая коррозия металлов представляет собой самопроизвольное разрушение металлических материалов вследствие электрохимического взаимодействия их с окружающей электролитически проводящей средой, при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала металла.  [c.148]

Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла [см. уравнение (271)] и восстановление окислительного компонента коррозионной среды [см. уравнение (326) ] проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом преобладающим.  [c.181]


А. Иофа и Л. А. Медведева (1949 г.) установили, что адсорбция ионов иода на поверхности железа замедляла реакции ионизации атомов металла и  [c.226]

Реакции первого порядка особенно характерны для высоких температур — это диссоциация молекул или ионизация атомов Н2—2Н Н-.Н+-fe, и т. д.  [c.301]

Электрохимическая коррозия - это взаимодействие металла с коррозионной средой (раствором электролитов), при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекает не в одном акте и их скорости зависят от электродного потенциала.  [c.146]

Электроны атомов, находясь в разных энергетических состояниях, обладают разными энергиями. Следовательно, для отрыва электронов (ионизации атомов), находящихся на разных энергетических уровнях, требуются различные количества энергии, причем с удалением электрона от ядра это количество уменьшается.  [c.354]

Селективное возбуждение атомов и молекул лазерным излучением позволяет осуществлять разделение изотопов. Селективно возбужденные атомы или молекулы в составе смеси изотопов становятся химически активными и смогут вступать в химическую реакцию, позволяя тем самым разделить изотопы. Разделение изотопов можно осуществить также путем селективной ионизации атомов или молекул лазерными лучами и последующим воздействием магнитного ноля.  [c.389]

Образование п-мезонов происходит, когда энергия первичной частицы больше порогового значения (- 300 Мэе). Число я-мезонов, образованных на одно неупругое взаимодействие, сильно зависит от начальной энергии и возрастает с увеличением энергии. При энергиях, больших 30 Гэв, выход я-мезонов составляет около 80% общей множественности (табл. 15.11). В результате неупругого взаимодействия образуются я+-, я -и я°-мезоны. Время жизни нейтрального я°-мезона очень мало (т=2,1-10 сек). Практически он сразу же распадается на два у-кванта. Поэтому при расчете защиты я°-мезоны не рассматриваются, однако распадные у-кванты инициируют электронно-фотонный каскад в защитных средах, и в некоторых случаях необходимо учитывать дозу фотонного излучения. я -Мезоны теряют свою энергию на ионизацию атомов среды кроме того, они могут испытывать неупругие взаимодействия с ядрами среды и, в  [c.247]

Основной механизм ионизации газа при самостоятельном электрическом разряде — ионизация атомов и молекул вследствие ударов электрона.  [c.169]

Энергия ионизации атома водорода, например, равна 13,6 эВ.  [c.169]

Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к  [c.171]


Однако рассеяние заряженных частиц на электронах атомной оболочки часто сопровождается ионизацией атомов, приводит к потерям энергии и торможению частицы. При столкновении нуклонов или я-мезонов с нуклонами, как увидим ниже (гл. IX), возможно рождение новых частиц, изменение структуры и состояния сталкивающихся частиц. Такие процессы называются неупругим рассеянием или неупругими столкновениями.  [c.27]

Механизм биологического действия ионизирующего излучения состоит в том, что оно вызывает ионизацию атомов (особенно атомов водорода) и разложение молекул внутри клеток биологической ткани, приводит к изменению и разрушению клеток, может породить явления (ожоги, малокровие и др.), представляющие опасность для организма. Опасность усугубляется еще тем, что организм непосредственно не отвечает болевыми реакциями на ионизирующее излучение. Последствия облучения проявляются не сразу, а лишь спустя несколько дней и порой приводят к таким необратимым процессам в организме, которые не поддаются лечению. Большие дозы радиоактивных излучений вызывают тяжелые заболевания животных и человека — лучевую болезнь. Поэтому при работе  [c.217]

Мгновенная мощность излучения в режиме генерации сверхкоротких импульсов примерно в Г/АТ раз больше средней мощности и может достигать значений 10 —10 Вт. Поэтому сверхкороткие импульсы нашли широкое поле применения при исследовании самых разнообразных явлений — многофотонной ионизации атомов и молекул, вынужденного рассеяния, мгновенного нагрева вещества до очень высоких температур и т. п. Рекордно короткая длительность импульса позволила использовать сверхкороткие импульсы для изучения очень быстрых процессов, например, распада возбужденных состояний молекул, происходящего за время 10 —10 с, времени существования эффекта Керра ( 152), инерционности нелинейного фотоэффекта (см. 179) и т. д.  [c.815]

Ионизационное торможение является главным механизмом потерь энергии при прохождении заряженной частицы через вещество. В этом механизме кинетическая энергия заряженной частицы тратится на возбуждение и ионизацию атомов среды, через которую она проходит. Спрашивается, от чего зависит величина ионизационных потерь и каков ионизационный пробег частицы, на котором она теряет всю свою энергию Для ответа на эти вопросы рассмотрим сначала элементарную схему взаимодействия заряженной частицы с одним электроном, а затем просуммируем эффект для всех электронов, мимо которых про летает частица.  [c.203]

В процессе ионизационного торможения кинетическая энер- гия заряженной частицы идет на возбуждение и ионизацию атомов среды, через которую она движется.  [c.227]

Электромагнитное взаимодействие нейтрона с электроном определяется величиной взаимодействия между их магнитными моментами. Но последнее настолько мало, что его энергия достигает потенциала ионизации атома (- 10 эв) лишь на расстояниях порядка 10 см. Таким образом, сечение ионизационного торможения нейтрона оказывается равным см , т. е. при-  [c.239]

Одним из видов неупругого электромагнитного взаимодействия заряженных частиц с веществом является ионизационное торможение, при котором кинетическая энергия частицы тратится на возбуждение и ионизацию атомов среды. Величина удельной потери энергии на ионизацию не зависит от массы частицы, пропорциональна квадрату ее заряда и концентрации электронов в среде и обратно пропорциональна (в первом приближении) квадрату скорости частицы  [c.255]

Кинетическая энергия осколков расходуется на ионизацию атомов среды. Ионизационный пробег и удельная ионизация осколков на разных участках их пути в воздухе были определены экспериментально при помощи тонкой ионизационной камеры ИК, помещенной в сосуд с воздухом, давление которого можно было изменять (рис. 160).  [c.389]

На рис. 2.1 приведена зависимость первого потенциала ионизации атомов J от атомного номера. Первый потенциал ионизации соответствует энергии, необходимой для отрыва электрона от нейтрального невозбужденного атома. Зависимость (2.1) имеет отчетливый периодический характер. Как видно из рис. 2.1, щелочные металлы (Li, Na, К, Rb, s) имеют ио сравнению с другими элементами минимальные потенциалы ионизации 5,4 5,16 4,35 4,18 3,90 эВ соответственно. В атомах щелочных металлов имеется всего лишь один валентный электрон, который находится вне заполненной оболочки и поэтому связан относительно слабо, из-за чего в различных реакциях эти элементы легко теряют внешний электро , образуя при этом положительно заряженные ионы — катионы Li+, Na+, К+, Rb+, s+. После потери внешнего электрона электронные оболочки соответствующих атомов становятся такими же, как п оболочки атомов ближайших к ним инертных газов (Не, Ne, Аг, Кг, Хе, Rn), имеющих очень устойчивую электронную конфигурацию, первый потенциал ионизации для которых очень велик и изменяется от 12 до 25 эВ (рис. 2.1).  [c.56]


Здесь величина 13,52 представляет собой энергию ионизации атома водорода (в эВ).  [c.238]

Видно, что энергия ионизации атома примеси Ed в раз меньше энергии ионизации атома водорода. Из (7.111) следует также, что Ed зависит от 2 , т. е. уровень двухкратно заряженного иона примеси лежит в запрещенной зоне ниже уровня однократно заряженного иона.  [c.238]

Ионизация атомов происходит или электронами, или положительными ионами по реакциям  [c.435]

Первая реакция возможна, если кинетическая энергия сво юд-ных электронов превышает энергию ионизации атома (eui, где и, -потенциал ионизации).  [c.435]

Если Еп = Е , где , — энергия ионизации, то когда энергия суммы фотонов Nhv достигнет величины, превышающей произойдет ионизация атома, т. е. оптический электрон оторвется от атома. Это явление носит название многофотонной ионизации. Так, например, наблюдалась ионизация атома гелия (потенциал ионизации 24,58 эВ) в результате поглощения 21 фотона излучения неодимового лазера (5. = 1,06 мкм), В такого рода опытах применяется сфокусированное излучение мощных импульсных лазеров. При этом напряженность электрического поля составляет 10 —10 В/см. Если ионизация происходит в газе или конденсированном диэлектрике, то при очень большой плотности энергии может возникнуть искровой пробой среды электрическим полем излучения лазера.  [c.312]

В работе oy и Димика [7371 рассматривался возможный случай, когда степень ионизации атомов газа в системе газ — твердые частицы может стать весьма существенной. При равновесии условие нейтральности заряда для нереагирующих твердых частиц в инертном газе записывается в виде  [c.454]

Ионная, или гетерополярная, связь типична для молекул и кристаллов, образованных из разных ионов (анионов и катионов). Типичный представитель ионных кристаллов — соль Na I. Образование катиона — результат потери атомом электрона. Мерой прочности связи электрона в атоме может служить потенциал ионизации атома (см. гл. 2).  [c.9]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Изотермы соединений КСФ1-КСФ4 имеют линейный характер и могут быть описаны уравнением Темкина (0 = Л + 2,3/Дg ), что соответствует случаю взаимодействия частиц в адсорбированном слое (хемосорбция). Адсорбция в этом случае носит мономолекулярный характер, увеличивает энергетический барьер ионизации атомов поверхностных слоев металла и практически необратима. Нелинейная изотерма соединения КСФ5 описывается уравнением Фрумкина  [c.268]

Индивидуальные кетосульфиды КСФ1-КСФ4 в сероводородсодержащих минерализованных средах характеризуются энергетическим эффектом торможения коррозии, так как наблюдается линейная зависимость Igy от 0 (рис. 43). Применение этих соединений приводит к проявлению на поверхности стали vj/i-эффекта и к увеличению потенциала ионизации атомов железа.  [c.270]

Изотермы всех ингибиторов имеют линейный характер, что свойственно адсорбции, описываемой уравнением Темкина, то есть случаю донорно-акцепторного взаимодействия частиц в адсорбированном слое (хемосорбция). Адсорбция носит моно-молекулярный характер, увеличивает энергетический барьер ионизации атомов железа и практически необратима.  [c.300]

Фотоэлемент ионный — ионный мектровакуумный прибор темного разряда, в которон освобожденные ва фотокатода под действием лучистой анергии электроны перемещаются в разреженном инертном газе к аноду, вызывая ионизацию атомов газа это несколько увеличивает чувствительность фотоэлемента нз за инерционности процессов возникновения и прекращения газового разряда ионный фотоэлемент применяют только при колебаниях интенсивности лучистого потока с частотой ве более нескольких килогерц световая характеристика нелинейна [4 ].  [c.164]

Эта температура соответствует энергии порядка 10 эВ, достаточной для полной ионизации атомов с малым атомным номером. Но если атомы водорода и гелия ионизованы, то общее число частиц N надо увеличить, прибавив к нему число свободных электронов, и, как следует из уравнения (117), средняя температура окажется в 2—3 раза ниже значения, полученного в (118). Имеются данные, что Солнце не изотермично во всем его объеме, т. е. не находится при постоянной температуре. Тем не менее результат нашей оценки близок к тому, что получается при более обоснованных расчетах средней температуры ядра Солнца. Температура на его поверхности намного ниже, как показывает подсчет по потоку излучения, испускаемо.му Солнцем, эта температура составляет около 6-10 К. Наш результат (118) для средней температуры Солнца более чем в 10 раз превышает визуально оцениваемую температуру его поверхности.  [c.303]


Прохождение ионизирующей частицы через счетчик сопровождается ионизацией атомов газа, наполняющего цилиндр счетчика. Возникающие положительные ионы устремляются под действием приложенного электрического поля к стенкам цилиндра, а электроны — к нити. В области сильного поля вблизи нити электроны преобретают такую энергию, что своими ударами ионизируют новые атомы газа. Число ионов нарастает лавинообразно, в газе счетчика вспыхивает электрический разряд, а в цепи — импульс тока.  [c.41]

Итак, экспериментальные исследования Резерф< )рда по рассеянию а-частиц при их прохождении через тонкие металлические листки показали, что основная масса атома и положительный электрический заряд сосредоточены в небольшой (lO — 10 м) центральной области атома, именуемой атомным ядром. В нейтральном атоме вокруг ядра обращается Z электронов. Такая мОт дель получила название ядерной модели атома. Ядерная модель атома в сочетании с квантовыми закономерностями объясняет возникновение и структуру атомных спектров процессы возбуждения и ионизации атомов, свойства молекул, свойства твердых тел (металлов) и т. д.  [c.81]

Многофотонное поглощение может проявляться весьма разнообразно. Если, например, вещество облучать светом, в составе которого есть спектральные компоненты с частотами и oJo, то может произойти поглощение двух фотонов и A oj при условии, что 0 1 -f U2 = um . Отметим также, что в результате поглощения многих фотонов оптический электрон может также оторваться от атома многофотонная ионизация, Г. С. Воронов, Н. Б. Делоне, 1965 г.). Так, например, наблюдалась ионизация атома гелия (потенциал ионизации 24,58 эВ) в результате поглощения 21 фотона излучения неодимового лазера (X = 1,06 мкм). В такого рода опытах применяется импульсное сфокусированное излучение мощных лазеров, освещенность достигает значений 10 — 10 Вт/см , а напряженность электрического поля составляет 10 — 10 В/см.  [c.571]

Ударная ионизация. Увеличение электропроводности твердого тела в сильных полях связано с увеличением концентрации носителей заряда. При полях, напряженность которых превышает 10 В/м, электроны проводимости приобретают энергию, достаточную для ионизации атомов. В результате ионизации образуются электронно-дырочные пары, которые ускоряются полем до высоких энергий и тоже могут ионизовать атомы. Таким образом, концентрация свободных носителей лавинообразно нарастает. Этот процесс и получил название ударной иониза-ции. Ударная ионизация не приводит к немед- ленному пробою вещества, поскольку электроны (и дырки), рассеиваясь на фононах, передают свою энергию решетке и могут рекомбинировать.  [c.259]

Итак, необходимым условием фотоэффекта является связанность электрона. Связь электрона в атоме характеризуется энергией ионизации атома, в твердом теле — работой выхода. Для наблюдения внешнего фотоэффекта надо, чтобы энергия фотона была больше энергии ионизации или работы выхода. Однако она не должна становиться чрезмерно большой при энергиях фотонов, измеряемых десятками и сотнями тысяч электрон-вольт, вероятность фотоэг1х1зекта быстро спадает по мере дальнейшего увеличения энергии фотона.  [c.157]

Катододюминесценция — люминесценция при возбуждении люминофора электронным пучком. В вакуумной трубке фокусированный пучок электронов с катода ускоряется электрическим полем и направляется на экран, представляющий собой тонкий слой люминофора на прозрачной подложке. Энергия электронов порядка 10 — 105 эВ. В результате электронной бомбардировки происходит ионизация атомов вещества люминофора каждый электрон может ионизовать сотни и тысячи атомов. Катодо-люминесценцня широко применяется в вакуумной электронике (свечение экранов телевизоров, осциллографов, различных электронно-оптических преобразователей).  [c.185]


Смотреть страницы где упоминается термин Ионизация атома : [c.12]    [c.45]    [c.168]    [c.324]    [c.325]    [c.327]    [c.18]    [c.21]    [c.274]    [c.338]    [c.227]   
Оптические спектры атомов (1963) -- [ c.17 , c.28 , c.55 ]



ПОИСК



Атом водорода, энергия ионизации

ИОНИЗАЦИЯ АТОМОВ и МОЛЕРадциг, В. М. Шустряков

Ионизация

Ионизация атома Крамерса—Хеннебергера

Ионизация атома при эффекте Штарка

Ионизация атомов плазме

Ионизация атомов эффективное сечение

Ионизация возбужденных атомов электронным ударом

Ионизация газа электронами, ускоренными при столкновениях с атомами в поле излучения

Ионизация невозбужденных атомов электронным ударом

Мир атома

Многофотонная надпороговая ионизация атома водорода

НАДПОРОГОВАЯ ИОНИЗАЦИЯ АТОМОВ Составные матричные элементы для процессов К-то и (К 1)-го порядков

НЕЛИНЕЙНАЯ ИОНИЗАЦИЯ АТОМОВ Законы Эйнштейна и многофотонные процессы

Надпороговая ионизация атомов

Надпороговая ионизация сложных атомов

ОБРАЗОВАНИЕ МНОГОЗАРЯДНЫХ ИОНОВ ПРИ МНОГОФОТОННОЙ ИОНИЗАЦИИ АТОМОВ Каскадный процесс образования многозарядных ионов

ПРЯМОЙ ПРОЦЕСС МНОГОФОТОННОЙ ИОНИЗАЦИИ Многофотонная ионизация атома водорода

Процедура измерений основных характеристик процесса нелинейной ионизации атомов

Процессы ионизации с участием возбужденных атомов

Расчет многофотонных сечений ионизации сложных атомов

Средние пробеги излучения при многократной ионизации атомов газа

ТЕОРЕТИЧЕСКИЕ МЕТОДЫ ОПИСАНИЯ ПРОЦЕССА НЕЛИНЕЙНОЙ ИОНИЗАЦИИ АТОМОВ Нестационарная теория возмущений

Теоретическое описание надпороговой ионизации в слабом поле Двухфотонная надпороговая ионизация атома водорода

Тепловая ионизация атомов

Экспериментальные данные о прямой многофотонной ионизации атома водорода

Энергия ионизации атома

Энергия ионизации атомов щелочных металлов и водорода

Энергия ионизации атомов щелочных металлов меди, сравнение с калием

Эффективные сечения ионизации атомов и молекул электронами



© 2025 Mash-xxl.info Реклама на сайте