Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жароупорность

Применение жароупорного бетона допустимо до температур 1200—1300°С. Жароупорный бетон нашел применение в химической промышленности для футеровки механических колчеданных печей. Разработаны конструкции таких печей из армированного жаростойкого бетона без металлического корпуса.  [c.459]

Змеевики пароперегревателя выполнены из труб жароупорной стали диаметром di/d2 = 32/42 мм с коэффициентом теплопроводности Х=14 Вт/(м-°С). Температура внешней поверхности трубы /с2 = 580°С и внутренней поверхности i i = 450 .  [c.13]


Температуру наружной поверхности жароупорной изоляции определяем по уравнению (23-21)  [c.386]

Строительство промышленных газовых турбин началось в XIX в., но стало широко развиваться с 30-х годов XX в. в связи с освоением выпуска жароупорных сталей.  [c.326]

Нижнюю часть сферической вихревой камеры 3 выполняют из жароупорной стали и устанавливают в головке цилиндра с зазором 0,2— 0,3 мм с тем, чтобы ослабить отвод тепла с охлаждающей водой. В результате этого повышается температура нижней части камеры 3, что способствует сокращению задержки воспламенения, облегчает пуск и повышает надежность работы двигателя при малых нагрузках.  [c.427]

На фиг. 44 показан его кратковременный предел прочности при изгибе при температурах до 1000° С. Следует особо отметить хорошую жароупорность этог№ сплава.  [c.610]

При очень хорошей жаропрочности и жароупорности термостойкость этого материала неудовлетворительна. Даже кермет с 70% Сг и 30% АЬОз имеет термостойкость, недостаточную для применения в качестве лопаток газовых турбин. Эти материалы применяются для изготовления тиглей, сопел, колпачков термопар и т. п.  [c.610]

ТОГО заглушка к последней перемычке 8 присоединен второй конец индуктирующего провода. Чтобы уменьшить потери в перемычках 8, 9, соединяющих шины с индуктирующим проводом, к перемычкам припаяны треугольные косынки 3, расширяющие путь для тока. Втулка 6 служит для изоляции наружной шины от внутренней. Пластины магнитопровода удерживаются между текстолитовым диском 13 и кольцом // последнее крепится разрезным стяжным хомутом 10. Латунные или из жароупорной стали штифты 1 в диске 13 предохраняют индуктирующий провод от случайных прикосновений к нагреваемой поверхности. В этом индукторе вода, охлаждающая токоведущие шины, поступает затем сквозь отверстия в индуктирующем проводе на закаливаемую поверхность.  [c.136]

Машина предназначена для испытаний металлов на растяжение или сжатие при температурах до +1200" . Зажимное устройство и тяги машины изготовлены из жароупорной стали. Машина позволяет соответственно температуре нагрева образца создавать следующие максимальные нагрузки  [c.262]

В общем машиностроении заклепки изготовляются из сталей различных марок. Кроме стальных заклепок, в некоторых отраслях промышленности находят применение заклепки из легких и цветных сплавов алюминия, меди и др., а также жароупорных и специальных сплавов.  [c.444]

В 1961 г. Харьковский турбинный завод (ХТЗ) выпустил газовую турбину мощностью 50 тыс. кет, в которой температура газа на входе 800° С. Это— первая в мире газотурбинная установка большой мощности. Теория указывает, что при температуре газа на входов газовую турбину 1200° С газовая турбина превзойдет по экономичности все другие тепловые двигатели. Весь вопрос в жароупорных материалах. Советские металлурги разработали материал, способный выдерживать длительную температуру порядка 700— 800° С, но для сильно нагруженных роторов, дисков предельная температура его снижается до 650—670° С. Конструкторы ХТЗ нашли эффективный способ настолько интенсивного охлаждения горячих деталей турбины, что при температуре газа в 800° С детали не нагревались выше допустимой температуры [22].  [c.51]


Решение о развитии реактивной истребительной авиации было принято Советским правительством еще в ходе Великой Отечественной войны. Весной 1946 г. начались летные испытания первых отечественных реактивных истребителей МиГ-9 и Як-15, а осенью того же года — летные испытания реактивного истребителя Ла-150. Истребитель МиГ-9 — цельнометаллический моноплан с двумя турбореактивными двигателями РД-20 (рис. 105) — был спроектирован ОКБ А. И. Микояна. Принятая в нем компоновка, характерная размещением двигателей непосредственно в фюзеляже и ставшая впоследствии классической для двухмоторных самолетов этого класса, значительно улучшила его аэродинамические качества. Истребитель Як-15 (рис. 106) был спроектирован ОКБ А. С. Яковлева на базе серийно строившегося самолета-истребителя Як-3 — с заменой поршневого двигателя турбореактивным двигателем РД-10 и с устройством специального экрана из жароупорной стали для защиты нижней поверхности фюзеляжа от действия горячих газов, выбрасываемых из выхлопного сопла. Опытный истребитель Ла-150 был построен по проекту, разработанному ОКБ С. А. Лавочкина.  [c.373]

В зависимости от используемых в бетоне цемента и инертных он обладает рядом специфических свойств. Например, существуют быстротвердеющие бетоны (на глиноземистом цементе), бетоны на безусадочном цементе, на расширяющемся цементе, жароупорные, кислотоупорные бетоны и ряд других.  [c.368]

Для изготовления деталей существующих типов машин и механизмов применяются металлы и сплавы разнообразные по составу, свойствам и методам их производства. Выбор и назначение металлических материалов для изготовления деталей машин производится на основе характеристик их прочности, полученных при статических, динамических и других испытаниях, на основании данных об их особых свойствах коррозийной устойчивости, электросопротивлении, жароупорности и др.  [c.65]

Никелевые сплавы обладают жаростойкостью, жароупорностью, большой термоэлектродвижущей силой и высоким электросопротивлением при весьма малом температурном коэффициенте электросопротивления, высокой коррозионной стойкостью, прочностью и пластичностью при комнатной и повышенных температурах.  [c.192]

Сталевары дают машиностроителям стали самых разнообразных сортов и видов конструкционные, инструментальные, нержавеющие, жароупорные, жаростойкие, кислотостойкие в виде проката (рис. 61), поковок, штамповок, отливок (рис. 62 и 63).  [c.144]

Сильхромы применяют для выпускных клапанов автомобильных и авиационных поршневых. моторов и дизелей, а также в качестве жароупорного материала, например, при изготовлении рекуператоров, теплообменников для подогрева воздуха, колосниковых решеток [34].  [c.129]

Стали этой группы применяют в виде литья, проката, поковок, листа, ленты и сварочной проволоки для изготовления деталей жароупорных изделий и аппаратуры.  [c.149]

Присадка вольфрама к хромистым и хромоникелевым жароупорным сталям в количестве нескольких процентов не вызывает больших изменений в отношении жаростойкости, если детали работают при температурах не выше 900° С.  [c.222]

Для изготовления монолитного и сборного бетона и железобетона, используемых в наземных, подземных и подводных сооружениях и в условиях попеременного воздействия воды и мороза портландцемент марок 500—700 для изготовления предварительно напряженных железобетонных конструкций, при аварийных ремонтных и восстановительных работах .для получения строительных растворов — кладочных и штукатурных при условии смешения с глиной, известью и минеральными добавками для производства различных изделий. (легкого, тяжелого, жароупорного, щелочестойкого. защитного ИТ. п. бетонов и изделий из него) Наряду с обычным портландцементом, а преимущественно— для производства сборных железобетонных конструкций и деталей без тепловой обработки и с тепловой обработкой (пропаривание при нормальном давлении)  [c.513]

Жароупорный асбестоцемент приготавливают из портландцемента, тонкомолотой минеральной добавки (шамот, кварц, асбестовая пыль) и асбеста. Соотношение цемента тонкомолотая добавка 6 4 по весу, дозировка асбеста — 10— 15% от веса сухих компонентов. Жароупорный асбестоцемент может быть применен для температур 1100—1150° С в камерах сгорания, газоходах, отражательных экранах, тепловых агрегатах и т. п.  [c.519]


Способы соединения с арматурой. Для соединения магнита с арматурой или для укрепления его на валу применяют втулки или стержни из жароупорной немагнитной стали. Втулки и стержни устанавливают литейные формы и на них заливают магнит. Заливаемая деталь должна иметь форму, препятствующую ее проворачиванию в теле магнита и смещению вдоль оси. Во втулках высверливают и нарезают крепежные отверстия, а стержни используют как крепежные болты. Применение стержней предпочтительнее, так как при прочих равных условиях диаметр стержня меньше диаметра втулки. Диаметр втулок, валов и отверстий во избежание трещин не должен превышать 20—30 % от диаметра магнита. Втулки и стержни, заливаемые в магниты малых размеров, могут быть из бронзы, так как тепла, содержащегося в отливке, недостаточно, чтобы расплавить втулку. Бронза не должна содержать цинк во избежание его испарения и выбрасывания металла из формы. Соединение магнитов полюсными наконечниками производят способами, приведенными в табл. 29. В приборостроении наиболее употребительны способы сварки, за-  [c.104]

Металлизация — покрытие посредством распыления (пульверизации) расплавленного металла — применяется для ремонта и восстановления изношенных деталей, исправления брака, повышения жароупорности дета-дей(например, покрытие алюминием), придания антикоррозионных свойств (оцинковка). Процесс в основном протекает следующим образом. К соплу аппарата подается проволока из металла, служащего материалом для покрытия, к которой подводятся кислород и ацетилен, дающие при горении высокую температуру (до 3000° С), проволока плавится расплавленный металл распыляется сжатым воздухом, поступающим к соплу под давлением до 4 ат (392,4 кн1м ), с силой ударяется о поверхность детали и прочно к ней пристает.  [c.28]

Пример 24-3. Стальной паропровод диаметром djd2 — 180/200 жлг с коэффициентом теплопроводности = ЬО вт м-град покрьгг слоем жароупорной изоляции толщиной 50 мм с X 0,18 вт м-град. Сверх этой изоляции лежит слой пробки толщиной 50 мм = = 0,06 вт/ж-гр<3(Э. Температура протекающего внутри трубы пара равна ti = 427° С, температура наружного воздуха 2 = 27° С. Коэффициент теплоотдачи от пара к трубе 200 вт1м -град,  [c.386]

Теплонзоляторы пористого происхождения используются при температурах, не превышаюш,их 150" С. Для тепловой изоляции при высоких температурах используются жароупорные материалы.  [c.271]

Футеровка печей для плавки черных металлов может быть кислой (на основе кремнезема ЗЮ ), основной (на основе плавленого магнезита MgO) или нейтральной (на основе глинозема А120д). При плавке алюминия и его сплавов применяют футеровку из жароупорного бетона на основе тонкомолотого периклаза с шамотным заполнителем. В печах для плавки меди используется футеро-вочиая масса, состоящая из тонкомолотого корунда н высокогли-  [c.230]

В ванных печах в качестве рабочих сред используются расплавы солей (NaNOз, KNOз, Na N, K N и др.), которые имеют более высокую теплопроводность, по сравнению с газами, и более равномерное распределение температур, что обеспечивает высокую равномерность нагрева изделий. Вследствие больших коэффициентов теплоотдачи от жидкости к металлу обеспечивается высокая скорость нагрева в ваннах. Конструкция ванной печи (рис. 3.26) определяется условиями нагрева тигля, выполненного из жароупорной стали. Обогрев тигля производится с помощью горелок  [c.170]

При приблизительно одинаковом составе металлокерамическне материалы 8 ряде случаев (см. стр. 571) имеют более низкую длительную жаропрочность, а также жароупорность, чем плавленные. Однако термостойкость и вибростойкость у металлокерамических материалов выше. Кроме того, в металлоке-рлмических материалах менее выражено вредное влияние ориентировки после механической деформации. Пластичные высокожаропрочные материалы, которые обладают достаточной термостойкостью в переплавленном состоянии, например молибден и его пластичные сплавы, лучше готовить методами вакуумного или дугового плавления.  [c.605]

Из сравнения табл. 25 и 26 видно, что карбиды, борнды и нитриды превосходят по величине атомной концентрации большинство элементов. Очень хорошую жароупорность имеет карбид кремния (стоек до температуры 1350 С). Еще выше жароупорность силицида молибдена (стоек до 1700°С). Так, например, MoSi2 при нагреве в токе кислорода в течение 2000 час. при 1200° С дает  [c.607]

Силицид молибдена при очень хорошей жароупорности имеет при высоких температурах недостаточное сопротивление ползучести. Так, из фиг. 43 видно, что при 1095 С под нагрузкой 7 кГ1мм он удлиняется за 50 час. на 10%. Поэтому силицид молибдена применяется в качестве элементов сопротивления в электрических печах для температур до 1700° С и для защитных покрытий других жаропрочных материалов, преимущественно па молибденовой основе, недостаточно стойких против окисления.  [c.608]

Из этих материалов на заводе Metallwerke Plansee (Австрия) производятся опытные лопатки для авиационных газовых турбин. Как видно из табл. 27, с увеличением содержания цементирующего Ni—Со—Сг-сплава повышается ударная вязкость, значения прочности при комнатной температуре, жароупорность и падает твердость и длительная жаропрочность.  [c.608]

Рно. 72. Увеличение массы жароупорных сталей на воздухе при разлвчнык темпераиу-рах. Массовая доля компонентов в сталях, %  [c.117]

Никель и его сплавы. Никель входит в состав многих сталей, придавая им ряд ценных качеств хорошие механические свойства (высокие прочность и пластичность), стойкость против коррозии, жароупорность. Наряду с втим имеется ряд сплавов, в которых основой является никель. Из числа конструкционных сплавов никеля отметим монель-металл (68% Ni, 28% Си, 1,5% Мп, 2,5% Fe иногда вместо железа и части марганца вводятся Be, Si и Со). В качестве основы Ni входит в ряд сложных жаропрочных сплавов, о которых говорится в разделе 13 настоящего параграфа.  [c.323]

Дилатометр относится к механическим датчикам н представляет собой устройство, принцип действия которого основан на изменении размера тел при повышении пли понижении температуры, На рис. 1 показан дилатометрический датчик машины для испытания на ползучесть и длительную прочность. Датчик состоит из двух тяг 1 и 9, жестко соединенных с концами жароупорной трубы 10, линейные размеры которой зависят от температуры в рабочем пространстве высокотемпературного устройства На конпе тяги 1 закреплена ось 5, вокруг которой поворачивается рычаг 4. На рычаге закреплен подвижный контакт 6, а на тяге 1 — неподвижные контакты 7 ц 8.  [c.460]


Углерод, который находится в газе, действует тем сильнее, чем большей восстановительной способностью обладает газовая смесь, чем в практике пользуются при цементации сталей. Генераторный, водяной и светильный газы или чис1ые углеводороды при температурах выше 600° С также производят значительное науглероживающее действие на хромосадержащие жароупорные стали и сплавы с образованием карбидов хрома. Если же составе сталей присутствуют другие элементы, обладающие большим химическим сродством с углеродом, например Ti и Nb, то в зависимости от температуры и состава образуются более стойкие карбиды этих элементов, а также карбиды хрома.  [c.224]

Изготовление клеющих составов. Вяжущих растворов, очистительных средств, уплотнительных и гидроизоляционных замазок и покрытий, холодных глазурей и эмалей, теплостойких и химстойких минеральных красок, жароупорных бетонов, абразивных изделий (кругов и пр.) пористых фильтрующих материалов, электродов для электродуговой сварки и пр  [c.443]

Жаростойкий бетон приготовляют из растворимого стекла плотностью 1,38— 1,40, кремнефтористого натрия, мелкого и крупного огнеупорного заполнителя. Расход отдельных компонентов на 1 бетона, рассчитанного на службу при температуре до 1100° С растворимое стекло плотностью 1.38 350—400 кг, Na Si Fj 40— 50 кг, тонкомолотый шамот 500 кг, шамотный песок 500 кг и шамотный щебень 750 кг. При использовании в качестве тонкомолотой добавки и заполнителей боя магнезитового кирпича полученный бетон может служить до 1400° С. Нагревание жароупорных бетонов до 500° С не снижает их прочности, в интервале температур 600 —900° С прочность большинства бетонов несколько снижается и при более высоких температурах возрастает и часто превышает прочность исходного бетона. Температура начала деформации бетонов с шамотным заполнителем под нагрузкой 2 кГ/см изменялась в пределах 950—1050° С, а конца 1050—1150° С. Бетон достаточно термостоек. Коэффициент термического расширения бетона с шамотным заполнителем в интервале температур 20—750° С равен 8 10 -7-10-10 . Предел прочности при сжатии жароупорного бетона 100—200 кПсм . Усадка бетона происходит примерно до 300° С и составляет около 0,3%, при дальнейшем нагревании бетон расширяется.  [c.511]

Жароупорный бетон — специальный вид бетона, способный сохранять в заданных пределах основные свойства при длительном воздействии на него высоких температур. Этот бетон состоит из портландцемента, тонкомолотой добавки (шамот, хромит, кварцевый песок, шлак, зола и т. п.), мелкого и крупного заполнителя (шамот, базальт, диабаз, шлак и т. п.) и воды. Вид и соотношение компонентов в бетоне зависят от условий его эксплуатации. 1 бетона, рассчитанного на службу при 1100—1200° С, содержит портландцемента — 300 кг, тонкомолотого шамота — 100—300 кг, шамотного песка 500—700 кг, шамотного щебня — 700 кг и воды 330 л. Марки бетона от 100 до 300 (предел прочности при сжатии образцов 10Х 10Х 10 см, высушенных при 110° С в течение 32 ч, через 7 суток после изготовления). Температура начала деформации жароупорных бетонов на шамотном заполнителе под нагрузкой 2 кПсм равна 1100—1200° С, а конца 1350—1400° С. Термостойкость этих бетонов не ниже термостойкости шамотных изделий их коэффициент линейного расширения в интервале температур 20—900° С изменяется в пределах 6-10 — 8-10 , линейная усадка при максимальных температурах равна 0,4—1,0%. В зависимости от состава бетона максимально допустимые температуры элементов конструкций колеблются в пределах 350—1400° С. Объемный вес бетона 1800—2800 Сушку и разогрев теплового агрегата можно осуществлять только через 7 суток твердения бетона со скоростью подъем температуры до 150° С—5—40° /i< выдержка при 150° С — 0,33—7 суток, подъем температуры от 150° С до рабочей 25—200° С/ч. Жароупорный бетон применяют для кладки фундаментов доменных печей, стен боровов, регенераторов, шлаковиков, кессонов, сборных отопительных печей и т. п.  [c.519]


Смотреть страницы где упоминается термин Жароупорность : [c.29]    [c.387]    [c.193]    [c.142]    [c.607]    [c.119]    [c.51]    [c.48]    [c.522]    [c.523]    [c.201]    [c.522]    [c.401]   
Теория сварочных процессов Издание 2 (1976) -- [ c.340 ]



ПОИСК



Бетон жароупорный

Бетон жароупорный состав

Выбор жароупорных марок стали и сплавов

Жароупорные и термоизоляционные бетоны

Жароупорные материалы

Жароупорные набивные массы

Жароупорные сплавы сопротивления

Жароупорные стали и сплавы

Механические высокой жароупорности - Химический

Организация работ при сооружении тепловых агрегатов из жароупорного бетона

Ошибки, встречающиеся при применении жароупорного бетона в тепловых агрегатах

Приготовление жароупорного бетона

Приготовление и укладка жароупорных и теплоизоляционных бетонов

Применение жароупорного бетона в тепловых агрегатах

Сооружения и футеровки из жароупорного кисло-, тостойкого бетона

Состав и свойства жароупорных бетонов, набивных и торкретных масс

Сплавы "жароупорные высокого электросопротивления

Сплавы "жароупорные высокого электросопротивления литые

Сплавы "жароупорные высокого электросопротивления магнитострикцией

Сплавы "жароупорные высокого электросопротивления особыми зависимостями теплового расширения

Сплавы "жароупорные высокого электросопротивления повышенным постоянством проницаемости и магнитной стабильностью

Сплавы "жароупорные высокого электросопротивления проницаемостью

Сплавы "жароупорные высокого электросопротивления прямоугольной петлей магнитного гистерезиса

Способы повышения теплоустойчивости и жароупорности стали

Стали жароупорные

Характеристика жароупорной стали, применяемой для деталей печей

Характеристика и состав жароупорного бетона

Химический состав высоколегированной нержавеющей, кислотостойкой и жароупорной стали



© 2025 Mash-xxl.info Реклама на сайте