Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел при кручении

Tj. — предел текучести при кручении (чистом сдвиге) т , — предел выносливости при кручении с симметричным циклом изменения напряжений  [c.7]

П43. Коэффициенты снижения предела выносливости при изгибе и при кручении для валов и осей у краев насаженных деталей  [c.323]

Лучшие свойства обеспечиваются при концентрации С в поверхностном слое не более 0,8—1,05%. Дальнейшее повышение концентрации С снижает, например, износостойкость (на 10—15%), предел прочности при кручении (на 15—20%), а также ударную вязкость.  [c.141]


Пределы выносливости на изгиб имеют минимальное значение при симметричном знакопеременном цикле, повышаются с увеличением степени его асимметрии, возрастают в области пульсирующих нагрузок, а с уменьшением амплитуды пульсаций приближаются к показателям статической прочности материала. Пределы выносливости при растяжении примерно в 1,1 — 1,5 раза больше, а при кручении в 1,5-2 раза меньше, чем в случае симметричного знакопеременного изгиба.  [c.283]

При кручении цилиндра в его поперечных сечениях возникают только касательные напряжения. Нормальные напряжения в поперечных и продольных сечениях пренебрежимо малы и могут быть приняты равными нулю. В пределах упругих деформаций высоту цилиндра, подвергнутого скручиванию, можно считать неизменной.  [c.188]

Тн — предел прочности при кручении, максимальное касательное напряжение, МПа  [c.12]

Составление условий прочности в этих случаях не вызывало затруднений. Для обеспечения прочности материала требовалось, чтобы наибольшее нормальное напряжение (при растяжении, сжатии) или наибольшее касательное напряжение (при кручении) не превосходило соответствующего допускаемого напряжения, значение которого установлено по полученному опытным путем соответствующему пределу текучести или пределу прочности (для хрупких материалов).  [c.221]

Аналогичным образом, но на других мащинах проводят испытания и находят пределы выносливости при действии осевых сил (а ,), при кручении (т ,) и при сложных деформациях.  [c.311]

В результате указанных обстоятельств, например, предел усталости, полученный в условиях циклического растяжения и сжатия, оказывается на 10 — 20% ниже, чем предел усталости, полученный при изгибе. Предел усталости при кручении сплошных образцов отличается от предела усталости, полученного для полых образцов, II т. п.  [c.394]

Рис. 61. Эффективные коэффициенты концентрации напряжений ( 1) ,4 Для валов с отношением диаметров D/d =1,4 при кручении в зависимости от отношения r/d для сталей с пределом прочности Рис. 61. <a href="/info/127433">Эффективные коэффициенты концентрации напряжений</a> ( 1) ,4 Для валов с отношением диаметров D/d =1,4 при кручении в зависимости от отношения r/d для сталей с пределом прочности
Величина предела выносливости существенно зависит от вида деформации образца или детали. В связи с тем что испытания на выносливость при растяжении-сжатии, а также при кручении требуют более сложного оборудования, чем в случае изгиба, проводятся они значительно реже. Поэтому при отсутствии опытных данных соответствующие пределы выносливости определяют по известному пределу выносливости при симметричном цикле изгиба на основе следующих эмпирических соотношений  [c.333]


Предел текучести материала бруса при кручении связан с пределом текучести при растяжении экспериментально установленной зависимостью  [c.236]

Касательные напряжения в этом выражении являются функцией момента внешних сил М и относительного угла закручивания а, кривую зависимости которых получают опытным путем (рис. 68). Угол а связан с деформацией сдвига простым соотношением (Х.5), по которому можно построить кривую деформации чистого сдвига для нахождения предела текучести и определения крутящих моментов при кручении стержня, обладающих при деформации упрочнением (рис. 69). Результаты опытов по-  [c.120]

В предыдущих главах рассматривались такие случаи нагружения бруса, при которых задача оценки прочности не вызывала затруднений. Достаточно было в его опасной точке вычислить максимальное напряжение и сопоставить с предельным напряжением материала, полученным непосредственно из опыта. Так, при оценке прочности бруса, работающего на растяжение, максимальное расчетное напряжение сравнивалось с предельным напряжением материала, полученным при испытании на растяжение. Для бруса, испытывающего деформацию кручения, максимальное расчетное напряжение сопоставлялось с пределом текучести или прочности материала при кручении, опять-таки полученным опытным путем.  [c.313]

Построить диаграмму касательных напряжений в зависимости от угла закручивания и определить модуль упругости при кручении. Найти величину предела пропорциональности для рассматриваемого случая.  [c.88]

Предел текучести при кручении  [c.66]

Аналогично предел выносливости при кручении  [c.66]

По эмпирическим формулам найти предел текучести при кручении и пределы выносливости при кручении и при изгибе.  [c.112]

Большая часть данных по многоцикловой усталости получена при испытаниях на изгиб симметричным циклом с определением о ,. Для ориентировочной оценки пределов выносливости при других видах напряженного состояния можно использовать следуюш,ие соотношения для конструкционных сталей предел выносливости при растяжении — сжатии а- = (0,84-0,9)О-,. при кручении T-i = (0,5H-0,6)a i для алюминиевых сплавов эти коэффициенты составляют 0,85—0,95 и 0,55—0,65 соответственно.  [c.78]

Интеграл в левой части равенства (7.39) называется циркуляцией касательного напряжения при кручении. Равенство (7.39) выражает содержание теоремы Р. Б р е д т а, которую можно сформулировать так для всякого замкнутого контура, расположенного в пределах поперечного сечения бруса и не пересекающего его границ, циркуляция касательного напряжения при кручении равна плоили, ограниченной этим контуром, умноженной на 2G0.  [c.140]

При кручении прямого круглого бруса в его поперечных сечениях возникают касательные напряжения т. Они распределены по линейному закону вдоль любого радиуса сечения и достигают наибольшего значения в точках контура сечения (рис. 11-13, а). При расчете по допускаемым, напряжениям опасному состоянию соответствует возникновение в точках контура напряжений, равных пределу текучести -Ст при сдвиге (рис. 11-13, б). Условие прочности имеет вид  [c.284]

Предел выносливости вала при кручении с симметричным циклом изменения напряжений  [c.314]

Допускаемое напряжение при кручении обозначается так же, как и при сдвиге [т]. Величину допускаемого напряжения [т] принимают равной 0,5 4- 0,6 допускаемого напряжения на растяжение [а]. При испытании на кручение стального образца можно получить диаграмму кручения, которая аналогична диаграмме растяжения и имеет такие же характерные точки, соответствующие Туп Тпц, Тт и тв, т. е. пределу упругости пропорциональности, пределу текучести и пределу прочности при кручении. Имея диаграмму кручения, легко построить диаграмму напряжений при кручении в координатах т, у.  [c.124]

Задавшись запасом прочности п, допускаемое напряжение для пластичного материала определяют по пределу текучести при кручении  [c.124]


В этом уравнении [т] Тт/п, где Тт — предел текучести при кручении, п — коэффициент запаса прочности. При этом предполагается, что как только наружные волокна достигают предела текучести, несущая способность бруса исчерпывается. Следовательно, помимо того запаса прочности, который дается коэффициентом п, мы имеем запас за счет недогрузки волокон, лежащих ближе к центру.  [c.134]

Как показывают эксперименты, при увеличении диаметра до 150—200 мм снижение пределов выносливости образцов при ротационном изгибе (см. рис. 578) может достигать 30—45 %. Опытные данные свидетельствуют о малом влиянии абсолютных размеров на выносливость при однородном напряженном состоянии — растяжении — сжатии. При кручении, как и при изгибе, снижение пределов выносливости с ростом размеров детали проявляется в большей степени. Это следует отнести за счет влияния градиента напряжения.  [c.669]

Аналогично предел выносливости при кручении т-. = 0.55-0-., = 0.58-279.5 = 162 МПа.  [c.111]

Приведенные выше соотношения и все им подобные следует применять с осмотрительностью, поскольку они получены только для определенных материалов и в определенных условиях испытания (при изгибе, при кручении). Предел выносливости, например, полученный в условиях циклического растяжения и сжатия, оказывается на 10... 20 % ниже, чем предел выносливости, полученный при изгибе, а предел выносливости при кручении сплошных образцов отличается от предела выносливости, полученного для полых образцов.  [c.480]

При испытании на кручение стального образца длиной 20 см к диаметром 20 мм,установлено, что при крутящем моменте 160 Ш угол закручивания равен 25,5 м ра,ц. Предел упругости достиг при М = 270 НМ. Определить модуль-сдвига Q и предел упругости при кручении. Построить также эп1ору V по сеченис в момент достижения предела у ругости.  [c.36]

Пределы выносливости при пульсирующем и знакопеременном симметричном циклах связаны следующими приближенными зависимостями при изгибе ао = (1,4 4-1,6) а 1 при растяжении ао = (1,5 4-1,8) а 1р при кручении То = (1,4 4-2)т 1.  [c.284]

Большой практический интерес при кручении круглых валов представляет концентрация напряжений у продольных пазов, предназначенных для помещения шпонок. Если шпоночный паз имеет прямоугольное сечение (рис. 150, а), то в выступающих углах т касательные напряжения равны нулю, а во входящих углах п напряжения теоретически бесконечно велики (практически же их величина ограничена пределом текучести ). Как показали исследования, коэффициент концентрации напряжений для паза при заданных глубине его и размерах вала зависит главным образом от кривизны поверхности по дну паза. Поэтому углы п необходимо скруглять, причем с увеличением радиуса скругления концентрация напряжений будет уменьшаться. Так, с увеличением р1адиуса от 0,1 до 0,5 глубины паза коэффициент к снижается более чем в. 2 раза.  [c.218]

Оценку влияния концентрации напряжений при изгибе с кручением обычно осуществляют на основании соответствующих усталостных испытаний на машине, позволяющей создавать одновременное нагружение образца крутящими и изгибающими моментами при различном их соотношении. На рис. 564 представлены результаты экспериментов при синфазном изменении нормальных и касательных напряжений при симметричном цикле (o ik, t ik — пределы выносливости при симметричном цикле для образцов с концентрацией только при изгибе и только при кручении соответственно а<, , Га предельные амплитуды для образцов с концентрацией при одновременном действии изгиба и кручения).  [c.603]

Предел текучести при кручении связан с пределом текучести при растяжении зависимостью (0,55...0,60)сг, , для пластичных материалов принимают [Тк1ж (0,55...0,60) (сГр1.  [c.187]

Предел выносливости при изгибе обозначают а , аналогично при кручении — и при растяжении (сжатии) — Здесь индекс R указывает значение коэффициента асимметрии цикла, например, предел выносливости при симметричном цикле изгиба обозначают (т 1,то же, кручения—т 1, тоже, растяжения—сжатия— о 1р. При отнулевом цикле соответствующие пределы выносливости обозначают 0 , Одр.  [c.333]

Заметим, что коэффициент запаса прочности по пределу текучести j = = 410 МПа будет больше = ат/амакс=410/102 = 4,02. Учитывая только касательные напряжения при кручении, получим т 1 180  [c.299]

При испытании на кручение стального образца длиной 20 см и диаметром 20 мм было обнаружено, что при крутящем моменте 1640 кгсм угол закручивания был равен 0,026 радиана. Предел пропорциональности был достигнут при крутящем моменте, равном 2700 кгсм. Определить величину модуля упругости при сдвиге и величину предела пропорциональности при кручении.  [c.89]


Смотреть страницы где упоминается термин Предел при кручении : [c.12]    [c.296]    [c.301]    [c.231]    [c.370]    [c.29]    [c.322]    [c.59]    [c.8]    [c.8]    [c.668]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.172 ]

Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.160 , c.161 , c.162 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.11 ]



ПОИСК



Влияние Предел прочности при кручении

Деформации в пределах упругости при кручении

Кручение за пределом упругости

Кручение за пределом упругости открытого профиля

Кручение стального образца в пределах упругих деформаций

Образцы алюминиевые — Предел выносливости для испытания на кручение

Определение истинного предела прочности при кручении

Определение предела пропорциональности при кручении

Определение предела текучести при кручении

Определение условного предела прочности при кручении

Предел выносливости при кручении

Предел выносливости — Определение прочности при кручении — Определение

Предел выносливости — Определение текучести при кручении — Определение

Предел при кручении (медианные значения)

Предел при кручении 161, 162-Истинный

Предел пропорциональности при кручении — Обозначение, определение

Предел прочности алюминиевых сплаве при кручении

Предел прочности при изгибе при кручении истинны

Предел прочности при кручении истинный

Предел прочности чугуна при кручени

Предел текучести при кручении

Предел текучести условный Обозначение условный при кручении Обозначение, определени

Предел текучести условный при кручении

Пределы упругости, пропорциональности и текучести при кручении

Пример определения предела пропорциональности при кручении

Пример определения предела текучести при кручении

Расчет на кручение за пределами упругости

СЕРЫЙ Пределы прочности при кручении

Условный и истинный пределы прочности при кручении

Щеглов Н. Н., Пределы выносливости и пластические деформации сталей в некоторых случаях совместного изгиба и кручения



© 2025 Mash-xxl.info Реклама на сайте