Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пределы упругости, пропорциональности и текучести при кручении

Допускаемое напряжение при кручении обозначается так же, как и при сдвиге [т]. Величину допускаемого напряжения [т] принимают равной 0,5 4- 0,6 допускаемого напряжения на растяжение [а]. При испытании на кручение стального образца можно получить диаграмму кручения, которая аналогична диаграмме растяжения и имеет такие же характерные точки, соответствующие Туп Тпц, Тт и тв, т. е. пределу упругости пропорциональности, пределу текучести и пределу прочности при кручении. Имея диаграмму кручения, легко построить диаграмму напряжений при кручении в координатах т, у.  [c.124]


Модуль упругости при сдвиге кручением О, предел упругости и предел пропорциональности определяют путем точного измерения деформации при кручении с помощью тензометров. Остальные механические характеристики при кручении (наиболее важными из которых являются предел текучести Тд з и предел прочности определяют обычно по диаграмме кручения, т. е. по кривой зависимости между крутящим моментом Л4 и углом ф закручивания рабочей части образца (или относительным сдвигом у, пропорциональным углу закручивания рабочей части образца).  [c.464]

При испытании на кручение определяются следующие характеристики предел пропорциональности Тр, предел упругости предел текучести условный предел прочности вычисляемые по формулам  [c.109]

При испытании на кручение оцределяют модуль упругости при сдвиге О, относительный сдвиг при кручении у, технически предел пропорциональности при кручении Тпц, условный предел текучести при кручении То,з, истинный предел прочности при кручении Тн, условный предел прочности при кручении Тпч, характер разрушения при кручении (отрыв или срез), предел упругости при кручении Туп.  [c.54]

Мерой сопротивления образца пластической деформации в таких испытаниях является крутящий момент мерой деформации образца— угол закручивания ф. Соответственно первичная диаграмма кручения фиксируется в координатах М,ф — ф, причем из-за отсутствия сужения образца на диаграмме нет ниспадающей ветви. Из диаграммы определяют условные пределы пропорциональности, упругости, текучести, прочности, а также истинный предел прочности. Особенность метода заключается в том, что указанные прочностные характеристики выражаются не через нормальные, а через касательные напряжения. В области упругой деформации  [c.36]

Потенциальная энергия 7, 17, 27, 583, 622 Прандтля мембранная аналогия задачи кручения 467 Предел пропорциональности 185 предел текучести 186, ---характерных материалов 186 Преломление двойное, см. оптический метод в теории упругости  [c.670]

При испытаниях на этих машинах можно определять модуль упругости при сдвиге, предел пропорциональности, предел текучести, истинный и условный пределы прочности при кручении, относительный сдвиг, угол и число закручиваний образца.  [c.77]


Для точного измерения малых деформаций можно применять зеркальный тензометр и тензодатчики. При этом определяют модуль сдвига и касательные пределы текучести, упругости и пропорциональности. Так же, как и при изгибе, следует различать два условных предела текучести при кручении реальный, основанный на вычислении истинных напряжений, и номинальный с вычислением напряжений по обычным формулам сопротивления материалов [19]. В обоих случаях допуск (исходя из удлинения 0,2% при растяжении) следует выбирать по 1П теории прочности g = 1,5е = 0,3%. Так же, как и при изгибе, номинальный предел текучести выше, чем реальный, вследствие появления остаточных напряжений обратного знака. Как показала С. И. Ратнер, превышение номинального предела над реальным для разных материалов составляет 20—30%.  [c.49]

Условные пределы пропорциональности, упругости, текучести и прочности при кручении имеют физический и технический смысл, аналогичный соответствующим прочностным свойствам при других статических испытаниях для материалов, разрушающихся после сжатия и изгиба и дающих первичную диаграмму растяжения без максимума. Для материалов, в которых при растяжении образуется шейка, величины Тпч и особенно являются более строгими характеристиками предельной прочности в условиях кручения, чем 0в,5в и 5к для растяжения.  [c.194]

При испытаниях на кручение определяют модуль упругости при сдвиге О характеристики прочности предел пропорциональности Тпц, условный предел текучести то,з, истинный предел прочности Хк, условный предел прочности ть пластичность металла относительный сдвиг при кручении у.  [c.126]

Для определения величины моментов и Мд 3 необходимых для вычислений предела пропорциональности условного предела текучести т д и модуля упругости при кручении О, пользуются зеркальным тензометром, обеспечивающим необходимую точность.  [c.31]

Предел текучести при кручении (условный) То.з характеризуется величиной касательного напряжения (кГ/мм ), вычисленного условно по формулам для упругого кручения, при котором образец получает остаточный сдвиг, рав ый 0,3%. Деформацию до предела пропорциональности считают упругой, а за пределом пропорциональности — остаточной.  [c.54]

Определение некоторых механических свойств металлов производят, используя простые схемы нагружения — растяжение, сжатие, кручение. При растяжении получают диаграмму зависимости условных напряжений о = Р/Рд от условных деформаций 8 = А///о, используя силу Р, первоначальную площадь поперечного сечения Р , удлинение образца А/ и первоначальную расчетную длину образца 1д. Условная диаграмма зависимости напряжений от деформаций (рис. 3.1) позволяет определить предел пропорциональности — тОЧКа А действительный предел текучести, при котором начинаются пластические деформации, — точка В условный предел текучести ао,2 — точка С как пересечение линии, которая параллельна упругому участку диаграммы ОА и  [c.84]

Как я отметил в разделе 2.18, это изобретение дало Баушингеру возможность выполнить также первые исчерпываюш,ие исследования по сжатию. Предыдуш,ие изучения влияния реверсивных нагрузок по необходимости выполнялись при испытаниях на кручение или изгиб, поскольку при сжатии длинных образцов, которые тогда использовались для получения необходимой разрешаюш,ей способности по деформациям, происходило выпучивание. Баушингер тш,ательно различал пределы упругости и текучести в отношении как терминологических определений, так и суш,ности наблюдаемых эффектов. Хотя он отождествлял предел упругости с пределом пропорциональности, это не было чисто произвольным выбором определения. Он отмечал, что при высокой разрешаюш,ей способности измерительного прибора можно замерить остаточную деформацию при нагрузках, вызываюш,их напряжение ниже предела пропорциональности. Однако эта малая пластическая деформация воспроизводилась при повторном нагружении того же образца. Превышение предела пропорциональности не только вело к возрастанию величины остаточной деформации, хотя она еш,е оставалась чрезвычайно малой, но и к ее изменению от опыта к опыту. Таким образом, по определению Баушингера предел упругости — это точка, ниже которой микропластичность была устойчивой. Он, далее, отметил, что выше этого предела упругости наблюдался эффект упругого последействия в течение некоторого промежутка времени, хотя ниже предела упругости образец мог оставаться под фиксированными нагрузками долгое время без какого бы то ни было поддаюш,егося измерению увеличения деформации. Он использовал термин предел текучести для определения напряжения, со-ответствуюш,его точке на диаграмме деформаций, начиная от которой происходят сравнительно большие пластические деформации. В современной терминологии понятие предел упругости обычно соответствует баушингеровскому пределу текучести. Это обстоятельство надо иметь в виду, сравнивая ссылки XIX и XX веков на эффект Баушингера .  [c.48]


Фиг. 21. Кривая кручения для отожженной углеродистой стали. Мр — момент крученяя, отвечающий пределу пропорциональности при сдвиге Ме — момент кручения, отвечающий пределу упругости при сдвиге — момент кручения, отвечающий пределу текучести при сдвиге — наибольший момент кручения, выдерживаемый металлом нри возникновении разрушения. Фиг. 21. <a href="/info/14912">Кривая кручения</a> для отожженной <a href="/info/6795">углеродистой стали</a>. Мр — <a href="/info/242801">момент крученяя</a>, отвечающий <a href="/info/5000">пределу пропорциональности</a> при сдвиге Ме — <a href="/info/242801">момент кручения</a>, отвечающий <a href="/info/5001">пределу упругости</a> при сдвиге — <a href="/info/242801">момент кручения</a>, отвечающий <a href="/info/1680">пределу текучести</a> при сдвиге — наибольший <a href="/info/242801">момент кручения</a>, выдерживаемый металлом нри возникновении разрушения.
Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]

По аналогии с другими статическими испытаниями при- кручении определяют условные пределы пропорциональности, упругости, текучести и прочности, а также истинный предел прочности. Однако все эти свойства выражают не через нормальные, а черёз касательные напряжения. В области упругой деформации кручением цилиндрического образца  [c.191]


Смотреть страницы где упоминается термин Пределы упругости, пропорциональности и текучести при кручении : [c.564]    [c.11]   
Смотреть главы в:

Справочник по металлическим материалам турбино и моторостроения  -> Пределы упругости, пропорциональности и текучести при кручении



ПОИСК



Кручение за пределом упругости

Кручение упругое

Предел при кручении

Предел пропорциональност

Предел пропорциональности

Предел пропорциональности и упругости

Предел пропорциональности текучести

Предел текучести

Предел текучести при кручении

Предел упругости

Текучесть

Упругость предел (см. Предел упругости)



© 2025 Mash-xxl.info Реклама на сайте