Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серная кислота башенная

Серная кислота башенная 558, XX. Серная кислота камерная 558, XX. Сернистая кислота 634, 639, XX. Сернистая платина 635, XVI. Сернистый ангидрид 635, XX.  [c.467]

Серная кислота башенная  [c.472]

В реакторе башенного типа непрерывного производства суперфосфата процесс непрерывного производства суперфосфата сопровождается быстро протекающей реакцией между фосфоритной мукой и 62 %-ной серной кислотой. Реактор 2 выполнен из кислотоупорной стали (рис. 6.6.3). Производительность такого реактора 45 т суперфосфата в 1 ч. Удельный расход электроэнергии на 36 % меньше, чем при периодических процессах.  [c.659]


Концентрированные контактная и техническая и башенные кислоты (концентрация серной кислоты составляет  [c.184]

Содержание туманообразной серной кислоты в газе после сушильных башен.........  [c.9]

Химическая стойкость ферросилида марки С-15 в кислотах, вытекающих из первой и второй промывных башен, при обычной кислотной промывке проверена на ряде заводов. Эти, а также лабораторные испытания показали, что коррозионная стойкость ферросилида может быть отнесена к первому или ко второму классу (по ГОСТ 2233—43 на отливки фасонные из ферросилида). В настоящее время нет проверенных данных о возможности применения ферросилида при охлаждении кислоты увлажнительной башни. В 5—6%-ной Ы,504 ферросилид, очевидно, неустойчив. Пэ некоторым литературным данным, в 10%-ной серной кислоте при температуре 20° ферросилид марки С-15 имеет первый класс стойкости, а при температуре кипения третий класс.  [c.119]

При обычной кислотной промывке наибольшее применение для второй и увлажнительной башен имеют в настоящее время насосы типа КНЗ, у которых основные детали, соприкасающиеся с серной кислотой, выполняются из ферросилида марки С-15. Раньше широко применялись и хорошо работали насосы из твердого свинца. Для орошения первой башни 70—76%-нон серной кислотой можно установить насос типа ЧНЗ из серого чугуна марки СЧ 18-36 или марки СЧ 32-52. Насосы типа КНЗ оказались химически устойчивыми при концентрации серной кислоты от 10% и выше.  [c.128]

Иногда коррозия происходит в результате стекания серной кислоты по крышкам и стенкам башен и сборников. Во избежание этого серную кислоту нужно вводить в аппараты не через обычные штуцеры, а через специальные трубы, обеспечивающие непосредственное попадание ее в рабочее пространство аппарата. Застой серной кислоты, накапливание ее в пазах, углублениях, у трубных досок способствует коррозии. Поэтому выход кислоты следует делать близ самых низких точек рабочей зоны аппарата. Не следует также применять точечной сварки, при которой трудно избавиться от зазоров и щелей между листами. По этой причине предпочтительнее приваривать сливные штуцеры (патрубки) встык, а не внахлестку, когда выступающий внутрь конец патрубка мешает полному сливу.  [c.144]

Кроме того, некоторое количество серной кислоты осаждается в газопроводах до компрессора вследствие конденсации пара серной кислоты, всегда имеющегося в газовой смеси после сушильных башен. В каждом кубическом метре газа сушильной башни, орошаемой 95%-ной Н ЗО при температуре 50°, содержится  [c.157]


Фундаменты под сернокислотные башни (при башенном производстве серной кислоты) выполнялись в течение длительного времени в виде сплошных бетонных массивов. Такого рода фундаменты не позволяют контролировать возможные утечки кислоты через дно башен. Поэтому в последнее время они выполняются по типу фундаментов, под емкости (см. рис. 73).  [c.181]

В настоящее время имеется достаточный опыт эксплуатации труб из ферросилида (марки С-15) в установках для концентрирования серной кислоты, оросительных холодильниках башенных систем, в трубопроводах второй промывной башни и т. д.  [c.189]

При башенном способе производства серной кислоты стальные газоходы от первой башни до второй и от второй до третьей защищают от коррозии футеровкой кислотоупорными плитками в два слоя на диабазовом цементе. Раньше газоход между второй и третьей башнями не футеровали, коррозия стенок газохода была значительной особенно при большой его длине. Газопровод от последней башни к санитарным электрофильтрам также необходимо предохранять от коррозии кислотоупорными плитками.  [c.203]

Для защиты от коррозии наружной поверхности газоходов их окрашивают специальными химически стойкими покрытиями. Так, газоход от сухих электрофильтров до первой промывной башни защищают снаружи черным печным лаком, а газоходы промывных отделений контактных заводов и башенных отделений производства серной кислоты нитрозным способом—перхлорвиниловым лаком.  [c.204]

Рис. 3.1. Схема производства башенной серной кислоты [1] Рис. 3.1. <a href="/info/509295">Схема производства</a> башенной серной кислоты [1]
Газовая коробка башен защищается кислотоупорной керамической плиткой и кислотоупорным кирпичом без рулонного подслоя ввиду высокой температуры входящих газов возможность конденсации кислоты исключается. Опоры под насадку выполняются арочной конструкции из кислотоупорного кирпича. Такие опоры успешно работают на ряде заводов в сернокислотных башнях контактного производства серной кислоты. Крышки башни и газовой коробки выполняются из кислотоупорного бетона с расположением стальных несущих конструкций (двутавровых балок) вне основной массы бетона.  [c.132]

Сведения по эксплуатации насосов в среде башенной серной кислоты  [c.139]

Опыт показал, что при интенсификации процесса башенного производства серной кислоты коррозия свинца возрастает.  [c.140]

Не менее значительны потери тепла при охлаждении серной кислоты, получаемой башенным способом. Если отвод тепла здесь осуществлять с помощью теплообменников с промежуточным теплоносителем, работающих по принципу тепловой трубы , и использовать полученное тепло для нужд теплофикации, то можно получить значительную дополнительную экономию топлива. Для использования тепла низкопотенциальных ВЭР, носителями которых являются технологические жидкости, жидкие стоки в виде пульп, шламовые жидкости, необходимо разрабатывать специальную теплообменную аппаратуру, в частности, аппараты с антикоррозионными покрытиями, с пластинчатыми теплЬобменными поверхностями и т. п.  [c.198]

Серная кислота H2SO4, молекулярная масса 98,08, плотность 1,830— 1,835 г/см . Бесцветная прозрачная маслянистая жидкость без запаха, жадно поглощающая влагу и смешивающаяся с водой в любой пропорции с выделением большого количества тепла. Кис.тюта серная техническая (контактная улучшенная п техническая, олеум улучшенный и технический, башенная и регенеративная) иоставляется но ГОСТ 2184—77, аккумуляторная с государственным Знаком 1 ачества и 1-го и 2-го сортов концентрации 92—94%, различающиеся количеством нримесей,- по ГОСТ 667—73, реактив — но ГОСТ 4204 77. Серную кислоту перевозят в железных цистернах, контейнерах и бочках, а также в стеклянных бутылях. Она имеет исключительно большое иримененио в гальванотехнике, а также для травления металлов.  [c.433]


Еще более целесообразно применение однополочных контактных аппаратов перед башенными системами производства серной кислоты нитрозным способом. В этом случае при значительном повышении производительности системы создается возможность выпуска продукционной кислоты в виде купоросного масла. В то же время, вследствие улучшения абсорбции окислов азота путем орошения последней башни более концентрированной кислотой сильно снижается расход азотной кислоты, а. также создаются благоприятные условия успешной борьбы с загрязнением воздушного бассейна окислами азота.  [c.130]

На основании результатов испытаний опытного аппарата, проведенных на Невском химическом заводе, спроектирован промышленный форконтактный аппарат, предназначенный для интенсификации башенных систем производства серной кислоты. Как показали испытания, в этом случае можно применять наиболее дешевый высокопрочный железоокисный катализатор, технология приготовления которого разработана в ЛТИ им. Ленсовета, а опытная партия изготовлена на Невском химическом заводе.  [c.130]

Схема подкисления добавочной охлаждающей воды серной кислотой показана на рис. 9-6, не требующем особых пояснений. Дозировать следует не разбавленную, а крепкую серную кислоту, лучше всего башенную (75% Н2504), более удобную в зимних условиях (начало застывания при —30° С). Особой точности дозировки здесь не требуется, так как большое количество щелочной воды в системе охлаждения способно нейтрализовать 2—3-суточный расход кислоты. Для расчета установки необходимо установить допустимое значение Жпр по опытным данным или по формуле (9-1), после чего определяют расход кислоты по формуле (9-7). Размеры дозировки кислоты уточняют, сравнивая коэффициенты упаривания воды в системе по хлоридам и карбонатной жесткости.  [c.337]

Бештаунит любых концентраций при любых температурах, включая и высокие. Хорошо сопротивляются сжимающим нагрузкам, но неудовлетворительно работают на растяжение и на изгиб <800 0,07 Для футеровки абсорбционных, сушильных и поглотительных башен при нитро-зном и контактном способах получения серной кислоты и для аппаратов, подверженных воздействию агрессивных кислот и газов при высоких температурах  [c.58]

Важной проблемой является предотвращение коррозионных повреждений кислотных цистерн. При транспортировании контактной и башенной серной кислоты особое значение имеет соблюдение правил эксплуатации, предусматривающих полный слив кислоты, предотвращение разбавления кислоты, оставшейся на стенках котла, за счет конденсации влаги из воздуха. Это обеспечивается герметизацией крышки люка, исправной работой клапанов. Улучшенную аккумуляторную серную кислоту, в целях обеспечения сохранности качества и предотвращения загрязнения продуктами коррозии, перевозят в цистернах с котлами из двухслойных сталей 20К + ЮХ17Н13М2Т и ВСтЗ + 06ХН28МДТ. Следует учитывать коррозию основного слоя двухслойной стали в результате облива котла при наливе и сливе кислоты.  [c.194]

Работами, проведенными Е. И. Литвиновым и Г. С. Григорьевым, выявлены некоторые факторы, способствующие коррозии стали под действием паров и конденсата башенной серной кислоты. Как известно, < наблюдаются случаи коррозии и износа оборудования, в местах образования газовых мешков (например, в кнСлотопроводах), в местах подъема при неправильной установке, в трубах оросительных холодильников в случае их перекосов в вертикальном направлении или частичного заполнения их серной кислотой, р крупных задвижках типа Лудло и т. д. Этот вид разрушений иногда называют газовой коррозией, но это оказалось не совсем правильным, так как наряду с газами (N0+  [c.38]

При малонитрозном (с малой интенсивностью) режиме работы свинец является лучшим коррозионноустойчивым материалом для сооружения башен, предназначенных для производства серной кислоты нитрозным способом. Однако в современных высокоинтенсивных системах, работающих с высокой нитрозностью, свинцовая обечайка башен и днища быстро выходили из строя. Поэтому пришлось отказаться от свинца, и в настоящее время кожухи башен выполняются из углеродистой стали марки Ст. 3 до высоты колосниковой решетки, далее—из стали марки Ст. О по всей высоте башни.  [c.39]

Наблюдаются также случаи преждевременного разрушения насадочных колец башни промывочной водой. Это происходит, очевидно, от того, что при промывке в порах материала колец растворяются образовавшиеся ранее сульфаты, что понижает его прочность. Поэтому, как рекомендует М. Н. Второв, промывку загрязненной насадки продукционных башен не следует производить водой, а промывать слабой кислотой, а затем подг вергнуть обильному орошению крепкой серной кислотой (купоросным маслом), чтобы быстрее закрепить слабую кислоту в насадке. Насадка из фарфоровых колец лучше переносит промывку водой. Сказанное выше относится только к первой башне. В абсорбционных башнях, где температура значительно ниже, насадка и футеровка подвергаются меньшему воздействию газа и кислоты. Вследствие этого, повидимому, образование в порах ке-  [c.48]

На некоторых заводах крышки всех абсорбционных башен выполняются, подобно первой башне, из армированного кислотоупорного бетона. Бетонные крышки служат дольше, чем стальные, особенно во второй башне, где не исключена возмож1юсть конденсации на крышке разбавленной серной кислоты.  [c.50]

Погружные холодильники. Наиболее распростраиенньш типом холодильника до недавнего времени являлся змеевиковый погружной холодильник, применяемый для охлаждения кислот продукционных башен. Для защиты от коррозии стальной кожух холодильника футеруется кислотоупорными плитками в два ряда с перевязкой швов. Змеевик для холодильников первой башни изготовлялся из свинцовых труб (свинец марки С-2), а для холодильников остальных башен—из стальных цельнотянутых, термически обработанных труб толщиной 5—5,5 мм или тр б из стали 1Х18Н9Т. Во избежание сильной коррозии стальных труб концентрация серной кислоты не должна быть ниже 74%.  [c.59]


Реально возможной в настоящее время является лишь очистка газов от брызг и тумана серной кислоты с помощью мокрых электрофильтров. Что же касается окислов азота, то наиболее надежным методом их выделения из выхлопных газов сейчас считается способ поглощения купоросным маслом. Одн ако этот метод может быть использован только при работе башенной системы с выпуском куноросного масла для орошения им последней башни или в том случае, когда это купоросное масло можно получить из контактного цеха. Поэтому для улавливания брызг и тумана серной кислоты принято устанавливать в конце системы мокрые электрофильтры, а для выброса нитрозных газов в верхние слои атмосферы—высокие трубы. Конечно, при этом способе обезвреживания газов окислы азота безвозвратно теряются для производства и, кроме того, их вредность не устраняется, а лишь ослабляется. Несмотря на недостатки указанного метода, он представляет сейчас значительный интерес для промышленности.  [c.76]

Полиизобутилен марки ПСГ химически стоек при концентрации серной кислоты до 80% и температуре до 60° при концентрации 80—90% и температуре до 40° он удовлетворительно стоек, но для применения в аппаратах с олеумом непригоден. Полиизобутилен устойчив по отношению к сернистой кислоте и сернистому газу (при 50—60°). При наличии в газах окислов азота полиизо-бутилен, как показали опыты, проведенные на одном из заводов, не является устойчивым материалом, и поэтому в башенных системах без дополнительной защиты он не получил применения.  [c.84]

Стальной корпус сборника и его крышка защищены от коррозии таким же способом, как в описанных выше аппаратах. Если сборник применяется для водной промывки, то производится окисловка швов футеровки путем каполнения сборника 20%-ной серной кислотой или же путем промазки швов серной кислотой 5—6 раз в сутки в течение 2 суток после окончания сушки футеровки. Защита от коррозии сборников кислоты второй промывной и увлажнительной башен может быть также достигнута футеровкой стальных обечаек и крышек сборников винипластом (по слою кислотоупорной замазки) или асбовини-ловой массой.  [c.113]

На одном сернокислотном заводе испытаны в серной кислоте образцы труб из антегмита марки АТМ-1 длиной 0,3 м. Эти трубы помещались в кислотные желоба первой и второй промывных и увлажнительной башен промывного отделения контактного цеха так, что они были полностью погружены в кислоту и омывались по всей поверхности проточной кислотой, вытекаюшей из башни со скоростью 0,5—0,9 м1сек. По истечении 600 час. образцы труб были вынуты и подвергнуты осмотру и механическим испытаниям. Образцы труб из антегмита марки АТМ-1 в кислотах промывного отделения практически не подверглись изменениям и сохранили свое первоначальное состояние и свойства. Прибавление веса (набухание) составило 0,02%. После указанных испытаний изготовили опытные элементы теплообменных аппаратов.  [c.121]

Днище башни футеруется в два слоя каждый в 1/г кирпича с перевязкой швов днище газовой коробки поверх кирпича покрывается слоем кислотоупорного цемента толщиной 30 мм. Моногидратный абсорбер при наличии отдельно установленного брызго-уловителя защищается аналогично первой сушильной башне. В обоих случаях все детали, соприкасающиеся с кислотой (распределительные желоба и течки оросительного устройства, вкладыши штуцеров для входа и выхода кислоты, крышка люка), сделаны из серого чугуна марки СЧ 18-36. Чугунное литье должно иметь химический состав, приведенный в табл. 14. Крышка аппарата стальная и для защиты от коррозии 93—95%-ной серной кислотой ее покрывают по проволочной сетке слоем кислотоупорной замазки толщиной 30 мм. Опыт эксплуатации башен иа заводах химической промышленности свидетельствует о целесообразности изготовлять все крышки абсорбционных башен из кислотоупорного железобетона по типу крышки, описанной на стр. 47,  [c.131]

При соответствующем качестве ферросилидовые трубы безусловно химически устойчивы в средах первой и второй промывных башен контактных заводов. Однако еще не выяснено, можно ли применять ферросилидовые трубы для транспортирования 5—7%-ной серной кислоты (т. е. для цикла увлажнительной башни), а также для водного способа промывки (насыщенный водный раствор ЗОа). В литературе указывается на недостаточную коррозионную стойкость ферросилида для этих  [c.189]

Стали трубные углеродистые Ст. 10, Ст. 20 нестойки в малонитрозной кислоте даже без тока сернистого ангидрида (для первой башни башенных систем). В нитрозной серной кислоте эти стали стойки (III—IV группа) благодаря образованию пассивирующей пленки поэтому чугунные трубы, работающие на нитроз юй кислоте, в настоящее время заменяются стальными.  [c.197]

Серная кислота Н2804. Молекулярный вес 98. Техническая кислота делится на камерную, башенную и купоросное масло.  [c.28]

Кислота серная H2SO4. Чистая серная кислота представляет собой бесцветную прозрачную маслянистую жидкость без запаха. Плотность 1,834 г/сл , жадно поглощает влагу, смешивается с водой в любой пропорции, при этом выделяется большое количество тепла. Кислота серная техническая (техническая, техническая улучшенная, олеум, башенная и регенерированная) поставляется по ГОСТ 2184-59. Серную кислоту перевозят в железных цистернах, контейнерах и бочках, а также в стеклянных бутылях. Серная кислота имеет исключительно большое нримепение в различных отраслях промышленности в машиностроении основное применение в гальванотехнике и для травления металлов.  [c.393]

При башенном способе производства серной кислоты окисление сернистого газа производится с помощью окислов азота, растворенных в концентрированной серкой кислоте. Окислы азота частично связаны химически или растворены в серной кислоте эту смесь называют нитрозилсерной кислотой.,  [c.58]

Особенно интенсивной коррозии подвергается металлическое оборудование в серной кислоте низких и средних концентраций при повышенных температурах, частых теплосменах, наличии тепловых ударов, при загрязнении, кислоты огарком и другими твердыми примесями, увеличивающими эрозионный износ оборудования. Например, приходится применять усиленную защиту от коррозии для концентраторов I и II промывных башен контактной системы, головных аппаратов башенной системы и т. п. Усиленная антикоррозионная защита отличается наличием многослойной фу теровки.  [c.74]

По первому уравнению протекает процесс окисления сернистого газа окислами азота с образованием серной кислоты, по второму и третьему — регенерация окиси азота в трехокись, которая затем снова участвует в первой реакции. Для осуществления первой реакции окислы азота растворяют в серной кислоте, такой раствор называют нитрозой [1]. Процесс получения серной кислоты ведут в камерных или башенных системах на рис. 3.1 приведена схема цеха с семью башнями. Горячий обжиговый газ поступает одновременно в деннтратор 1 и концентратор 2, являющийся первой продукционной башней, и далее общим потоком через башню 3 проходит окислительную башню 6 и абсорбционные башни 7, 8 я 10. Затем газ направляется в электрофильтр 11, где он освобождается от брызг и тумана серной кислоты и выбрасывается через трубу в атмосферу. Готовой продукцией является 65—76%-ная Н2304.  [c.130]

Способы защиты от коррозии оборудования при нитрозном и контактном способах производства серной кислоты существенно различаются. Исследованиями НИУИФ установлено, например, что полиизобутилен неустойчив в кислоте и газе, содержащих окислы азота. Это заставило подбирать химически стойкие материалы, пригодные для изготовления подслоя футеровки. Материал башен, орошаемых нитрозилсерной кислотой, эксплуатируется в более жестких условиях (76—80%-ная Н2504 и < 15% окислов азота в пересчете на НЫОз, температура 120—130°С), чем при производстве кислоты контактным способом.  [c.132]



Смотреть страницы где упоминается термин Серная кислота башенная : [c.14]    [c.396]    [c.39]    [c.289]    [c.36]    [c.74]    [c.122]    [c.195]   
Техническая энциклопедия Том20 (1933) -- [ c.0 ]



ПОИСК



Башенная кислота

Башенный способ переработки на серную кислоту

Кислота серная

Производство серной кислоты башенным (иитрозным) методом



© 2025 Mash-xxl.info Реклама на сайте