Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение света и уширение спектральных линий

ПОГЛОЩЕНИЕ СВЕТА И УШИРЕНИЕ СПЕКТРАЛЬНЫХ ЛИНИЯ  [c.545]

Поглощение света и уширение спектральных линий  [c.545]

Судьба поглощенной энергии света определяется соотношением между -естественной шириной у и обратным временем между столкновениями 2/Тот. Если у > 2/тст, что имеет место в очень разреженном газе, то поглощаемая энергия высвечивается (свет рассеивается) если же у < 2/Тст — энергия переходит в основном в тепло (поглощение в буквальном смысле слова). Существуют и другие механизмы уширения спектральных линий в газе (см. об этом [10, 53, 54]).  [c.247]


Одна из причин поглощения света состоит в том, что атомы, внутри которых происходят колебания, совершая тепловое движение, претерпевают столкновения друг с другом. При каждом столкновении резко и неправильно меняются амплитуды и фазы гармонических колебаний, происходит переход в тепло энергии регулярных колебаний, т. е. поглощение света. Исходя из этих представлений, Г. А. Лорентц развил теорию уширения спектральных линий, обусловленного столкновениями между атомами (молекулами) газа. Такое уширение называется ударным уширением. Лорентц показал, что в газах столкновения между молекулами при тепловом движении статистически приводят также к экспоненциальному закону затухания интенсивности волны и к форме спектральных линий такого же вида, что и при естественном затухании.  [c.548]

Мы сперва учтем поглощение на холостой частоте с помощью линейной ФДТ для холостого поля при пренебрежении дисперсией нелинейной восприимчивости и покажем, что затухание рассеивающих поляритонов (т. е. фотонов в среде ) приводит просто к уширению наблюдаемой спектральной линии при сохранении ее площади. Далее будет рассмотрена более общая феноменологическая модель рассеяния света на поляритонах (РП), использующая кубическую ФДТ. Эта модель при простой однополюсной дисперсии восприимчивостей позволит с помощью нескольких характерных параметров рассмотреть некоторые особенности РП, уже отмечавшиеся в 1.2. Наконец, из эффективного гамильтониана и кинетического уравнения будет получен ОЗК для ПР и РП.  [c.214]

Ударные затухание и уширение спектральных линий особенно существенны в плотных газах и при высоких температурах. Для уменьшения влияния столкновений надо уменьшать плотность газа. Вот почему в опытах. Вина при изучении естественного затухания свечения атомов каналовые лучи направлялись в высокий вакуум. В обычных условиях столкновения значительно сильнее влияют на затухание волны, чем излучение. Однако формула (89.8) дает для времени затухания все же большие, а следовательно, для уширения спектральных линий — меньшие значения, чем наблюдаются на опыте. Следовательйо, должны существовать другие причины поглощения света и уширения спектральных линий.  [c.549]

Наличие в системе фононов и туннелонов приводит к тому, что матрица плотности полной системы становится бесконечномерной. Лишь в специфическом частном случае, когда влияние фононов и туннелонов сводится лишь к уширению спектральной линии, нам удается свести бесконечномерную систему для элементов матрицы плотности к четырем уравнениям, называемым оптическими уравнениями Блоха. Все это бьшо показано в предыдущей главе. Там же мы вывели формулы (7.39) для k и к , которые описывают вероятности вынужденных переходов с поглощением и испусканием кванта света и содержат информацию о взаимодействии с фононами и туннелонами в интегралах перекрывания а Ь). Мы показали, что замена функций k и к лоренцианом с полушириной 2/Тг позволяет прийти к оптическим уравнениям Блоха.  [c.111]


В гл. 1 мы показали, что процесс, который переводит атомы с уровня 1 на уровень 3 (для трехуровневого лазера см. рис. 1.4, а) или с уровня О на уровень 3 (для четырехуровневого лазера см. рис. 1.4,6), называется накачкой. Накачка осуществляется, как правило, одним из следующих двух способов оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных (например, для рубинового или неодимового) или жидкостных (например, на красителе) лазеров. Механизмы ушире-ния линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно мы имеем дело не с накачкой уровней, а с накачкой полос поглощения. Следовательно, эти полосы поглощают заметную долю (обычно широкополосного) света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что у них спектральная ширина линий поглощения невелика, а лампы для накачки дают широкополосное излучение, осуществить оптическую накачку довольно трудно. Замечательным исключением, которое следует отметить, является цезиевый лазер с оптической накачкой, когда пары s возбуждаются лампой, содержащей Не при низком давлении. В данном случае условия для оптической накачки вполне благоприятны, поскольку интенсивная линия излучения Не с 390 нм (достаточно узкая благодаря низкому давлению) совпадает с линиями поглощения s. Фактически этот лазер представляет интерес лишь в историческом плане, как одна из первых предложенных лазерных схем. Кроме того, его реализация на практике является весьма сложной, поскольку пары s, которые для обеспечения достаточного давления газа необходимо поддерживать при температуре 175 °С, представляют собой весьма агрессивную среду. Оптическую накачку весьма эффективно можно было бы использовать для полупроводнико-  [c.108]

Применения К.э. Конденсатор Керра, помещенный между двумя скрещенными поляризационными призмами, пропускает или не пропускает свет, в зависимости от величины наложенного поля. При этом с точностью по крайней мере до 10" ск. К. э. следует без задержки и затягивания за изменениями поля. Налагая на конденсатор переменное поле с большой частотой, получаем чрезвычайно быстро и точно работающий прерыватель для света. На этом основано все расширяющееся применение К. э. при физич. измерениях и в технике. Конденсатор Керра с громадными преимуществами заменяет зубчатое колесо Физо при измерении скорости света (Гавиола и Миттельштет (. С помощью К.э. может быть точно измерено ничтожное время порядка 10 ск., протекающее между моментом поглощения света и вторичным излучением его в виде флуоресценции. При помощи конденсатора Керра можно модулировать световую волну и получить искусственное уширение или расщепление спектральных линий (Рупп, Бром-.10Й). В технике К.э. применяется с успехом при передаче изображений на расстояние, при телевидении и в кнно звуковом (си. ).  [c.61]

Схема установки ААА включает независимым источник излучения света с частотой v, равной частоте аыа-литич, линии определяемого элемента атомизатор, преобразующий пробу в атомарный пар спектрофотометр. Свет, прошедший сквозь атомный пар, систе.чой линз направляется на входную щель спектрофотометра, интенсивность аналитич. спектральной линии / и на выходе регистрируется фогоэлектрич. методом. Поскольку естественная ширина спектральной линии постоянна, зависит только от времени жизни возбуждённого состояния и обычно пренебрежимо мала, разница контуров линии испускания и поглощения определяется в осн. допплеровским Av и лоренцеяским Av уширения.ии  [c.618]

Проявление фононной подсистемы рассматривалось выше только как фактор, определяющий уширение спектральных полос электронных переходов, или как источник линий фононных повторений электронных переходов, сопровождаемых поглощением или рождением оптич. фононов. Если при возбуждении фононов наводится дипольный момент, то эти колебания проявляются в спектрах ИК-поглощеняя (оптич. ветви). Колебания, меняющие поляризуемость, проявляются в спектрах комбинац. рассеяния. В кристаллах, обладающих центром инверсии, существует т. н. альтернативный запрет — одно и то же колебание может проявиться либо в ИК-спектре, либо в спектре комбинац. рассеяния света. По законам сохранения энергии и импульса в спектре поглощения проявляется не вся ветвь оптич. колебаний решётки, а узкий интервал вблизи критич. частоты. Если при поглощении света рождается один оптич. фонон, то частоты ИК-полос лежат в далёкой ИК-области. В молекулярных кристаллах частоты колебаний соответствуют внутримолекулярным колебаниям и имеют частоты от - 3500 см и ниже, т. е. полосы поглощения расположены в области от 2,7 мкм я ниже. Кроме того, имеются более слабые полосы, соответствующие возбуждению двух или более фононов или возбуждению неск. фононов одной частоты, полосы поглощения к-рых лежат в ближней ИК-области.  [c.628]


Изложение начинается с рассмотрения основных привдипов спектроскопии, т. е. с изучения элементарного акта поглощения или испускания фотона одиночным двухуровневым атомом или примесным центром. Необходимость подобного вступления обусловлена тем, что хотя вероятности соответствующих процессов и рассматриваются обычно в курсах квантовой механики, однако при этом остаются в тени некоторые принципиальные вопросы, возникшие в практической спектроскопии одиночного примесного центра, где большую роль играют флуктуации измеряемой величины, отсутствующие в спектроскопии молекулярных ансамблей. Флуктуации проявляют себя, например, в прыжках спектральной линии, когда мы имеем дело с поглощением света одиночной молекулой в полимере или стекле. Такие прыжки линии служат основой для стохастического подхода к проблеме уширения оптических спектров.  [c.9]

Второй механизм однородного ушнрения линии связан с явлением спонтанного излучения. Поскольку спонтанное излучение неизбежно присутствует в случае любого перехода, данное уширение называется естественным или собственным ушире-нием. Мы предварим обсуждение этого механизма уширения следующим замечанием. С помощью термодинамических соображений можно показать (см. раздел 2.4.3), что форма линии данного перехода будет одной и той же, независимо от того, наблюдаем ли мы форму линии поглощения (т. е. Wn), вынужденного излучения (т. е. W2 ) или спонтанного излучения. В случае естественного уширения проще всего рассматривать спектральную зависимость излучаемого света. К сожалению, как это станет яснее в разд. 2.3, спонтанное излучение есть чисто квантовое явление, т. е. оно может быть корректно описано только квантовой теорией электромагнитного излучения. Поскольку эта теория выходит за рамки книги, мы ограничимся тем, что выпишем окончательный результат и обоснуем его некоторыми простыми физическими соображениями.  [c.47]


Смотреть страницы где упоминается термин Поглощение света и уширение спектральных линий : [c.33]    [c.58]    [c.151]   
Смотреть главы в:

Общий курс физики Оптика Т 4  -> Поглощение света и уширение спектральных линий



ПОИСК



Линии уширение

Линия спектральная

Поглощение

Поглощение света

Поглощение спектральных линий

Спектральная линия уширение

Спектральное поглощение

Спектральное уширение



© 2025 Mash-xxl.info Реклама на сайте