Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция Лагранжа в задаче двух тел

Рис. 63. Первое прочтение два типа траекторий движения под действием силы тяжести (направленной вниз) при наличии магнитного поля, ортогонального плоскости (промежуточный вариант — траектория типа циклоиды). Наблюдается не падение, а дрейф. Левый рисунок, в отличие от правого, действителен лишь до тех пор, пока модуль начальной скорости не превосходит некоторого предела, при превышении которого траектория сразу пойдет вверх. Второе прочтение рисунка изменение углов прецессии и нутации в случае Лагранжа. Причина качественного сходства траекторий в обеих задачах — наличие линейных по скоростям членов в функциях Лагранжа и Рауса соответственно Рис. 63. Первое прочтение два типа <a href="/info/145625">траекторий движения</a> под действием <a href="/info/557">силы тяжести</a> (направленной вниз) при наличии <a href="/info/20176">магнитного поля</a>, <a href="/info/415157">ортогонального плоскости</a> (промежуточный вариант — траектория типа циклоиды). Наблюдается не падение, а дрейф. Левый рисунок, в отличие от правого, действителен лишь до тех пор, пока модуль <a href="/info/47704">начальной скорости</a> не превосходит некоторого предела, при превышении которого траектория сразу пойдет вверх. Второе прочтение рисунка изменение углов прецессии и нутации в случае Лагранжа. Причина качественного сходства траекторий в обеих задачах — наличие линейных по скоростям членов в <a href="/info/6454">функциях Лагранжа</a> и Рауса соответственно

Присоединяя к дифференциальным уравнениям Лагранжа первого рода (19) два конечных уравнения поверхностей /, (х, у, 2) = О и /2 У< 2) = О, получаем пять уравнений для определения пяти величин X, у, 2, Хз как функций времени. Таким образом, и в этом случае поставленная задача может быть разрешена. Она принципиально разрешима и при учете силы трения.  [c.247]

Таким образом, контактная задача представляет собой формулировку уравнений для движения двух тел с наложенными кинематическими (4.45) и статическими (4.46) ограничениями на их движения друг относительно друга. Существует два наиболее известных метода решения задач с ограничениями метод множителей Лагранжа и метод штрафных функций. Суть решения  [c.152]

Теория математического программирования включает в себя метод неопределенных множителей Лагранжа и является естественным продолжением и развитием этого метода. В задачах линейного программирования функция цели и ограничения линейны относительно своих аргументов. Рассмотрим два примера задач линейного программирования.  [c.13]

В контактной геометрии с задачей об обходе препятствия связаны два лежандровых многообразия с особенностями многообразие контактны х элементов фронта и многообразие 1-струй функции времени. Первое из них диффеоморфно накрывает лагранжев открытый ласточкин хвост, второе диффеоморфно цилиндру под первым.  [c.462]

Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]


Существенного успеха по сравнению с тем, что было достигнуто геометрическими методами, впервые добился Лежандр в мемуаре Исследования о прйтяжении однородных эллипсоидов , представленном Парижской академии в 1785 г. несомненно, работа была закончена на год или два года раньше. Лежандр справедливо указывает, что хотя Лагранж рассмотрел задачу о притяжении во всей общности, но фактически провести интегрирование ему удалось только в тех случа ях, которые были уже исследованы Маклоре-ном. Лежандр доказывает новую важную теорему если известна сила притяжения телом вращения любой внешней точки на продолжении оси тела, то она известна для любого положения внешней точки. Это позволяет ему обобщить теорему Маклорена о софокусных эллипсоидах вращения (обобщение теоремы на случаи трехосных софокусных эллипсоидов позже удалось Лапласу). Лежандр впервые вводит в этом мемуаре разложение в ряд по полиномам, названным его именем (по сферическим функциям), и здесь же впервые появляется силовая (или потенциальная) функция, но с указанием, что эта идея принадлежит Лапласу. По оценке Тодхантера, ни один мемуар в истории рассматриваемого вопроса не может соперничать с этим мемуаром Лежандра. В течение сорока лет средства анализа, даже в руках Даламбера, Лагранжа и Лапласа, не продвинули теорию притяжения эллипсоидов дальше того рубежа, на который вышла геометрия Маклорена.... Лежандр обобщил главный результат этой геометрии... Введение и применение круговых функций начинает новую эру в математической физике.  [c.152]

Ввиду трудностей, которые возникают в кинематике жидкости вследствие большой численности и легкой подвижности частиц, оказывается удобным несколько видоизменить применительно к особенностям жидкого потока обычные методы кинематики. Существуют два метода кинематического описания жидкого потока. Один из них называют обычно методом Лагранжа, другой—мето-дом Эйлера. Метод Лагранжа ничем, собственно, не отличается ох общих методов кинематики твердого тела. Конечной задачей кинематики, как известно из общего курса механики, является определение траекторий движения. Так же исследуется и движение жидкости по методу Лагранжа. Для каждой частицы жидкости должна быть определена ее траектория, т. е. координаты этой частицы должны быть определены как функции времени. Но так как частиц бесчисленное множество, то в самом способе задания траектории должно быть указано, к какой именно частице относится данная траектория. Для этого достаточно фиксировать положение всех частиц в какой-нибудь определенный, начальный момент времени Пусть при i — координаты какой-либо частицы будут соответственно а, Ь, с эти параметры отличают рассматриваемую частицу от других частиц.  [c.114]

Построение такой системы функционалов связано с размораживанием дифференциальных связей . Под этим имеется в виду следующая процедура. Компоненты сц девиатора тензора скоростей деформаций не являются независимыми функциями, а связаны условиями совместности. Эти условия могут быть переписаны в виде условий ортогональности тензора ец (ас) к некоторому классу гладких тензорных полей. Выбирая в этом классе счетное плотное множество, приходим к задаче об экстремуме функционала при наличии счетной системы условий ортогональности. Отбрасывая все условия ортогональности, оставляя одно, два или большее конечное число этих условий, получаем искомую последовательность вариационных задач. Конечное число условий ортогональности можно учесть в функционале с помощью игпожителей Лагранжа.  [c.88]


Смотреть страницы где упоминается термин Функция Лагранжа в задаче двух тел : [c.264]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.388 ]



ПОИСК



Задача Лагранжа

Задача двух тел

Функция Лагранжа



© 2025 Mash-xxl.info Реклама на сайте