Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классическая теория упругости упруго-динамическое состояние

Во-первых, расчетные схемы реальных конструкций, в особенности строительных (неразрезные балки и плиты, рамы, фермы, пространственные каркасы), были значительно сложнее схем, рассматриваемых в классических трудах по теории колебаний и необходима была разработка специальных методов динамического расчета сложных систем. Во-вторых, идеализированные предпосылки классической теории — вязкое сопротивление, идеальная упругость материала, идеализация расчетных схем конструкций и действующих на них динамических нагрузок — яе соответствовали действительным условиям работы конструкций. В-третьих, не было необходимых для динамического расчета конструкций опытных данных об эксплуатационных динамических нагрузках, о динамических характеристиках материалов и конструкций, о надежных расчетных схемах конструкций и т. д. Вследствие этого динамический расчет, например, строительных конструкций, находился в начальной стадии развития и еще не вошел в практику проектных организаций того времени (имеются ввиду 30-е годы). Единственным практическим руководством по динамическому расчету в то время был раздел в Справочнике проектировщика пром-сооружений Методы динамического расчета сооружений , составленный А. И. Лурье (1934 г.) и отражавший состояние динамики сооружений в те годы. Но к помощи этого раздела обращались только отдельные, хорошо подготовленные инженеры при проектировании важнейших объектов. Подавляющее большинство проектных организаций того времени предпочитало уклоняться от динамического расчета и продолжало применять традиционный способ динамического коэффициента нагрузки. Способ этот, как известно, состоял в том, что каждому агрегату (например, машине) с динамическим воздействием приписывался свой динамический коэффициент, больший единицы, ца который умножался вес агрегата. Динамический расчет конструкции подменялся таким образом ее статическим расчетом. Сейчас излишне говорить о том, насколько несостоятелен этот способ, игнорирующий динамические характеристики как нагрузки, так и самой конструкции.  [c.21]


Уточненными будем называть теории, которые отличаются от обычных классических наличием в дифференциальных уравнениях дополнительных членов, расширяющих в некотором смысле области применения классических теории. Классические теории стержней основаны на гипотезе плоских сечений, пластин — на гипотезах Кирхгофа и оболочек — на гипотезах Кирхгофа—Лява. По существу, в этих теориях применяются простейшие — линейные по поперечной координате аппроксимации и не учитываются упругие поперечные взаимодействия. Классическая теория продольных колебании стержней и теория обобщенного плоского напряженного состояния пластин также являются простейшими аппроксимациями, основанными на предположениях о постоянстве характерных функций по сечению (толщине) и малости поперечных эффектов. Появление уточненных теорий обусловлено тем, что классические теории при решении ряда задач современной техники приводили к заметным погрешностям. Можно сказать, что это является следствием физического и математического несовершенства классических динамических теорий. Эти теории предсказывают, например, бесконечные скорости распространения фронтов возмущений и не улавливают элементарных упругих толщинных эффектов.  [c.5]

Импульсное нагружение представляет собой кратковременное термосиловое воздействие с высокой концентрацией энергии. В слоистой конструкции будут возникать и распространяться волны напряжений, претерпевая многочисленные преломления и отражения от границ слоев. Соответствующий точный анализ напряженно-деформированного состояния слоистой оболочки при учете внутренней картины волновых явлений возможен при использовании динамических уравнений теории упругости. Однако реализация такого подхода чрезвычайно затруднительна. Используемые здесь линейные уравнения (9.1), основанные на гипотезе прямых нормалей для несущих слоев, правильно описывают распространение волн деформаций срединной поверхности, но искажают фазовую скорость изгибных волн, которая при уменьшении длины волны будет неограниченно возрастать. В действительности с большой скоростью движутся короткие волны малой амплитуды, которые из-за демпфирования в оболочке можно не учитывать. Волны, несущие основную энергию изгиба, имеют достаточно большую длину, движутся с конечной скоростью и вполне правильно описываются классическими уравнениями. Поэтому даже на основе линейной теории оказывается возможным выявить в первом приближении основные закономерности нестационарного поведения трехслойной оболочки при импульсном нагружении [286].  [c.491]


Классическая теория. В классической теории упругости ставится три основных типа задач определения упругого состояния динамические, статические и [олебательные. Эти типы задач в корне отличаются друг от друга и требуют различных подходов к их исследованию.  [c.54]

Уточненная теория Тимошенко существенно улучшила классическую теорию изгиба. Однако вопрос о пределах применимости и значимости этой улучшенной теории долгое время оставался открытым. В связи с этим были предприняты попытки сопоставить результаты этой теории с возможными точными решениями динамической теории упругости. Одна из первых попыток принадлежит С. П. Тимошенко 11.326] (1922). Были построены решения, описывающие гармонические колебания бесконечного стержня прямоугольного тюперёчного сечения, в приближениях плоской деформации или плоского напряженного состояния.  [c.29]

Л. Б. Именитов [2.12, 2.13] (1969) исследовал собственные колебания прямоугольной шарнирно опертой пластины, исходя из трехмерных уравнений динамической теории упругости, к которым применяется асимптотический метод интегрирования. Напряженное состояние пластины представлено в виде суммы основного медленно затухающего напряженного состояния и вспомогательных быстро затухающих от краев напряженных состояний. Для их определения применяются итерационные процессы. При этом первое приближение соответствует классической теории, вычислены также второе и третье, уточняющие приближения. Показано, что при отношении ширины квадратной пластины к толщине alh=25 асимптотические поправки к частоте по классической теории пластин малы. Из сравнения с точным решением показана также малость погрешности асимптотического решения даже при alh=6.  [c.147]

Как уже отмечалось выше, основной задачей теории упругости является определение упругого (динамического, статического или колебательного) состояния среды в классической и моментной теории упругости и термоупругого (динамического, статического или колеба гельного) состояния — в теории термоупру гости.  [c.53]

Сделаем несколько замечаний, касающихся физической интерпретации функций, принадлежащих рассмотренным выше функциональным пространствам. При классической постановке задач теории упругости все величины, характеризующие напряженно-деформированное состояние, должны выражаться достаточно гладкими функциями [299, 373, 505, 571]. Функциональные пространства гладких функций имеют достаточно] простой физический смысл. Физические величины, описываемые такими функциями, непрерывны и обладают непрерывными производными до некоторого порядка. К сожалению, в большинстве встречающихся на практике случаев это требование не выполняется и корректного решения таких задач в классической постановке не существует. Для математического Исследования и разработки эффективных методов решения таких задач рассматриваются яеклассические (слабые) формулировки. В этом случае все известные и неизвестные величины предполагаются принадлежащими пространствам Соболева с индексом из множества действительных чисел. Эти функциональные пространства, в частности, содержат и гладкие функции. Такой подход к задачам динамической теории упругости впервые применялся в [354], .  [c.87]


Смотреть страницы где упоминается термин Классическая теория упругости упруго-динамическое состояние : [c.43]    [c.41]    [c.234]   
Трехмерные задачи математической теории упругости и термоупругости Изд2 (1976) -- [ c.42 , c.49 ]



ПОИСК



Газ классический

Классическая теория упругости

Состояние теории

Состояние упругое

Теория динамическая

Теория классическая

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте