Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциалы низколегированной

Чугун сначала является анодом по отношению к низколегированным сталям, и его потенциал незначительно отличается от их потенциала. Однако по мере того, как чугун корродирует, особенно если происходит графитизация, графит, выделившийся на поверхности, сдвигает потенциал в положительную сторону. Поэтому по прошествии некоторого времени, зависящего от среды, на чугуне может быть достигнут потенциал, который будет катодным по отношению к потенциалу низколегированных и малоуглеродистых сталей. Такое поведение нужно учесть, например, при проектировании клапанов. Фаски клапанных седел должны иметь точные размеры и не иметь питтингов следовательно, их следует делать из такого материала, чтобы они были катодом по отношению к телу клапана. По этой причине для водных сред с высокой проводимостью часто предпочитают изготавливать тело клапана из стали, а не из чугуна.  [c.103]


Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв-  [c.127]

При коррозионном растрескивании под напряжением в слабо кислых средах, которое вызывается выделяющимся водородом, электрохимическая защита в общем случае не может дать эффекта [2]. Для пояснения этого на рис. 2.20 представлены кривые срок службы — потенциал для углеродистой стали в среде, содержащей сероводород [75]. При pH = 4 стойкость при катодной поляризации действительно заметно повышается (в некотором узком диапазоне потенциалов в результате образования поверхностного слоя FeS). Однако для длительного защитного действия этот эффект не может быть использован. По результатам измерений видно также, что по мере снижения потенциала, стойкость (по времени до разрушения) уменьшается. Анодная защита от коррозионного растрескивания под напряжением, вызываемого водородом, теоретически возможна, но нерациональна, поскольку при этом усилится равномерная поверхностная коррозия. Коррозионное растрескивание под напряжением под влиянием водорода в углеродистых и низколегированных сталях обычно может развиваться только в присутствии стимуляторов, которые не допускают рекомбинации выделившихся на катоде атомов водорода в молекулы Hj, вследствие чего в структуру материала может внедриться (диффундировать) повышенное количество водорода (см. рис. 2.1). К числу таких стимуляторов могут быть отнесены, например, гидриды элементов 5 и 6 групп Пери-  [c.75]

В большинстве случаев нужно защищать углеродистую или низколегированную сталь. Обычный для них защитный потенциал может быть достигнут в реальных практических условиях с применением протекторов из цинка, алюминия и магния. Для материалов с более положительными защитными потенциалами, например для высоколегированных сталей, сплавов меди, никеля или олова, можно применять также и протекторы из железа или активированного свинца (см. раздел 2.4). В настоящем разделе после краткого обзора мягкого железа как материала для протекторов рассматриваются только три вышеназванных металла и их сплавы.  [c.175]


Контактирование сталей, одинаковых по химическому составу (например, низколегированных и углеродистых), допускается, но при этом контактная коррозия полностью не исключается. По мере того как увеличивается в сталях концентрация легирующих элементов, контактное воздействие этих сталей усиливается. Объясняется это тем, что при увеличении концентрации хрома, никеля и меди увеличивается разность потенциалов [65].  [c.84]

Железо — железные сплавы. Контакт нержавеющих сталей с железом является в любой атмосфере нежелательным, поскольку разность потенциалов между нержавеющей сталью и железом значительна, а анодная поляризация железа в пленках электролитов, возникающих на металлах в промышленной и морской атмосферах, мала. Нержавеющая сталь в качестве катода работает относительно эффективно, особенно в промышленном районе, в воздухе которого имеется высокая концентрация сернистого газа, являющегося, как было показано в работе [15], сильным катодным деполяризатором./Контактирование между собой любых видов низколегированных и углеродистых сталей допустимо.  [c.141]

Таким образом, коррозия какого-либо металла (например, низколегированной или углеродистой стали) в электролите может быть замедлена контактом с более электроотрицательным металлом (например, с цинком) или ускорена контактом с более электроположительным металлом (например, с медью). Замедление коррозии металлов при их контакте с металлами, имеющими более отрицательные электродные потенциалы, используют для защиты металлических конструкций с помощью протекторов.  [c.116]

Катодные металлы. На практике благородные металлы ведут себя в соответствии со своим положением в ряду ЭДС. Однако, как видно из ряда активностей, коррозионный потенциал меди — благородного металла ( сц2 +/си = 0,34 В) в морской воде более отрицателен, чем у высоконикелевых сплавов (например, хастелоя) и нержавеющих сталей при условии, что эти сплавы находятся в пассивном состоянии. В то же время потенциал нержавеющей стали в активном состоянии подобен потенциалу низколегированной стали. Это означает, что нержавеющая сталь, содержащая 18% Сг и 8 /о Ni, в пассивном состоянии вызывает коррозию меди и медных сплавов, а в активном состоянии может сама подвергаться коррозии.  [c.39]

В таких условиях продукты коррозии остаются на металле и при хорошей адгезии замедляют процесс разрушения во времени. Скорчелетти показал, что продукты атмосферной коррозии, возникающие на низколегированных и высокоуглеродистых сталях, обладают большей защитной способностью по сравнению с продуктами коррозии на углеродистых сталях. Объясняется это их меньшей способностью к капиллярной конденсации воды и большим потенциалом в связи с тем, что в состав пленки входят окислы хрома, меди и никеля.  [c.13]

Углеродистые и низколегированные стали, а также нержавеющие стали в контакте с титановыми сплавами подверглись разрушению из-за значительной разности потенциалов контактирующих пар. Так, после испытаний сталь 1Х18Н10Т в месте контакта со сплавом ВТ5 подверглась коррозии.  [c.86]

Пассивное состояние исчезает, когда приложенный потенциал достигает более высоких значений, чем фз. Для пассивирующихся металлов важен потенциал фг, который отделяет пассивную зону от активной, так как ниже этого потенциала пассивирование невозможно. Он называется потенциалом активизации или фладе-потенциалом и является в основном функцией pH среды, в которую погружен металл. Поэтому при коррозии с водородной деполяризацией железо и низколегированные стали не могут быть действительно пассивными при pH < 8, поскольку их потенциал коррозии ниже равновесного потенциала катодной реакции. При коррозии с кислородной деполяризацией потенциал железа редко достигает значений более высоких, чем фладе-потенциал, поэтому при коррозии в обычных условиях пассивирование железа практически не играет никакой роли. Потенциал железа может превысить по-  [c.54]


В морской воде защита стальных конструкций обеспечивается при потенциале —0,80 В (н. к. э.). При более катодных потенциалах, например —1,10 В, возникает опасность появления избыточных гидроксил-ионов и большого объема образующегося водорода. Амфотериые металлы и некоторые защитные органические покрытия разрушаются под действием щелочей. Эндосмотические эффекты и образование водорода под слоем краски могут вызывать ее отслаивание. Эти явления часто наблюдаются на участках конструкций, расположенных вблизи анода. Выделяющийся водород может разрушать сталь, особенно высокопрочную низколегированную. Углеродистые стали обычно не подвергаются водородному разрушению в условиях катодной защиты. При избыточной Катодной защите выделение водорода может приводить к катастрофическому растрескиванию высокопрочных сталей (с пределом текучести выше 1000 МПа) при наличии растягивающих напряжений (водородное растрескивание под напряжением). Одним из ядов , способствующих ускоренному проникновению водорода в металл, являются сульфиды, присутствующие в загрязненной морской воде, а также в донных отложениях, где могут обитать сульфатвосстанавливающие бактерии.  [c.171]

Можно полагать, что именно протекание аналогичной реакции на электроде и в случае присутствия ионов хлора препятствует пассированию железа в растворах хлоридов. Исследование кинетики анодного процесса показало (рис. II1-4), что анодная поляризационная кривая стали 12ХМв I,ОН растворе сульфата натрия при температуре 300° С имеет сложный характер. С увеличением потенциала до — 0,050 в скорость анодного процесса возрастает. Железо в этой области потенциалов растворяется в активном состоянии. При дальнейшем увеличении потенциала скорость анодного процесса растворения металла сначала уменьшается, а затем изменяется крайне незначительно в достаточно широкой области потенциалов. Последнее обстоятельство указывает на то, что железо переходит в пассивное состояние. С дальнейшим ростом потенциала скорость растворения железа вновь увеличивается. Последняя область потенциалов соответствует перепассивации. Поскольку при низкой и высокой температурах введение в воду сульфата натрия в количестве 0,5 М не влияет существенным образом на характер и скорость коррозии низколегированных сталей аналогичный ход зависимости скорости растворения железа от потенциала следует ожидать и в дистиллированной воде. В нейтральных растворах, насыщенных воздухом, железо корродирует в основном с кислородной деполяризацией. Из представленной на рис. III-5 коррозионной диаграммы, полученной на основании опытных данных [111,6].  [c.96]

Как указывалось выше, в.нейтральных средах при комнатной и критической температурах анодные поляризационные кривые стали 1Х18Н9Т не имеют активной области. При потенциалах, отстоящих от стационарного значения на несколько десятых вольта, нержавеющая аустенитная сталь растворяется в пассивном состоянии. В связи с этим в дистиллированной воде, как при комнатной, так и при высокой температуре, контакт низколегированных сталей, алюминиевых сплавов и хромистых сталей со сталью 1Х18Н9Т практически скорости коррозии ее не изменяет. Во всех этих парах сталь 1Х18Н9Т является катодом.  [c.122]

Гальванические контакты, как и поляризация током, влияют на КР в хлоридных средах. Контакт с более электроотрицательными металлами действует подобно катодной поляризации, защищая от КР при разности стационарных потенциалов порядка 0,1 В и более. Для стали типа Х18Н9 защита от КР наблюдалась при контакте с цинком, алюминием, магнием, кадмием, железом, малоуглеродистой, углеродистой и низколегированной хромистыми сталями, содержащими 5—18 % Сг, свинцом, медью. Покрытия из этих металлов проявляют протекторные свойства, защищая от КР даже после появления в покрытии дефектов и несплошностей.  [c.119]

На чистом алюминии, низколегированных сплавах систем AI—Мп, А1—Mg, на промышленных сплавах систем А1—Си и А1—Си—Mg в 3—3,5 %-ном растворе Na l питтинг характеризуется определенным потенциалом образования пят. причем на сплавах последних двух систем довольно определенно разли-  [c.230]

Железо, углеродистые и низколегированные стали в Н2804 (кроме 20—70 %-ной) устойчивы при поддержании анодного потенциала в интервале 0,5—0,65 В. Нержавеющие стали в этих условиях изменяют п и п.п от 0,15 до 1,2 В, при которых йа<0,02 мм/год. В концентрированных растворах Н2804 при 80—120 °С потенциалы пассивации составляют 0,45—0,85 В.  [c.63]

В растворах Н3РО4 (75—85 7о при 100—135 "С) скорость коррозии нержавеющих сталей можно уменьшить в 10 раз (от 1—10 до 0,1—0,9 мм/год) при потенциале пассивации 0,45—0,75 В. Следует отметить, что в этой среде анодная зашита углеродистых и низколегированных сталей недостаточно эффективна. В растворах НЫОз полную защиту от коррозии нержавеющих сталей можно обеспечить при потенциале 0,75—1,15 В.  [c.63]

Применение электрохимических испытаний для быстрой оценки коррозионных характеристик этих сталей представляет определенный интерес, поэтому Пурбе [150] предложил аппаратуру, в которой измерения потенциала используются для оценки природы. защитных свойств продуктов коррозии, образующихся на низколегированных сталях (таких, как атмосферостойкие стали) во время периодических циклов сушки и увлажнения. Аппаратура (рис. 10.14) состоит из стеклянного сосуда, содержащего соответствующий электролит, такой как природная или искусственно приготовленная специальная вода. Два образца, изготовленные из металла или сплава, при исследовании присоединяются к шпинделю (соединительному валу), который вращается с медленной скоростью порядка 1 об/ч так, что образец находится в погруженном состоянии приблизительно в течение половины этого времени остальное время пребывает в атмосфере. Электрическая лампочка расположена над сосудом так, что за полный цикл образцы успевают высушиться под ней после того, как они выходят из раствора. Измерение потенциалов образцов в конце и начале периода погружения осуществляется при помощи коммутаторов,  [c.568]



Смотреть страницы где упоминается термин Потенциалы низколегированной : [c.203]    [c.33]    [c.261]    [c.166]    [c.21]    [c.45]    [c.31]   
Коррозия и защита от коррозии (1966) -- [ c.43 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте