Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита стальных трубопроводов

Катодная защита стальных трубопроводов 145 Катучий кран 75  [c.286]

На этом основана защита стальных трубопроводов бикарбонатом кальция. Образующиеся в результате катодной реакции восстановления кислорода ионы гидроксила взаимодействуют с бикарбонатом и способствуют отложению на поверхности пленки из карбоната кальция, что замедляет скорость коррозии.  [c.81]


Защитные действия цинковых покрытий усиливаются тем, что они являются по отношению к стали протекторами. Даже при наличии пор и других дефектов в цинковы.х покрытиях они защищают ст льные изделия от коррозии. Цинк хорошо противостоит действию морской воды. Например, в Англии стальная проволока противоминных сеток быстро разрушалась в морской воде, а будучи оцинкована, стала весьма стойкой. Катодную защиту стальных изделий цинком применяют тогда, когда невозможно осуществить оцинкование. Катодная защита эффективна в солёной (морской) и свел ей воде, а также в большинстве почв. Таким методом защищают от коррозии стальные трубопроводы и корпусы морских судов стальное изделие соединяют проволокой или стержнем с цинковыми анодами. Ток при этом течет от цинка к катоду (стали) Лучшими протекторными свойствами обладает цинк, легированный 0,1—0,3% алюминия и содержащий следующие примеси (не более) 0,006% свинца 0,0014% железа 0,006 %.меди и 0,06% кадмия. Когда содержание кадмия не превышает 0,025%, то допустимое содержание железа может быть повышено до 0,003%.  [c.271]

Битумная изоляция довольно скоро теряет свое действие,. Способом дополнительной защиты стальных трубопроводов от коррозии является создание в окружающем их грунте искусственного движения электрического тока к наиболее уязвимым в отношении коррозии участкам трубопровода — так называемая катодная защита.  [c.145]

Борьба с коррозией с помощью наложения на металлическую конструкцию постоянного тока недостаточно внедрена в теплоэнергетику. Вместе с тем ощущается немалая потребность в использовании этого метода. Так, имеется перспектива для широкого внедрения катодной защиты стальных баков, которые являются непременным элементом почти любой тепловой схемы, и анодной — для предупреждения коррозии оборудования, контактирующего с кислотами в схемах обессоливания и Н — Ыа-катио-нирования (баков для хранения серной кислоты, эжекторов для дозирования и трубопроводов для подачи серной кислоты). Большой арсенал средств, применяемых для защиты металла от коррозии теплоэнергетического оборудования, обусловлен разнообразием как рабочих сред, так и видов металла, а также условий его службы. В связи с этим приобретают существенное значение профилактический характер противокоррозионной защиты и контроль за ее осуществлением.  [c.296]

Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы.  [c.210]


На основании экспериментальных данных установлено, что естественный потенциал стальных трубопроводов в различных грунтах в большинстве случаев находится в пределах от минус 0,35В до минус 0,65В. Поэтому при расчете катодной защиты, если нет замеренных данных, естественный потенциал стали принимают равным минус 0,55В по отношению к водородному электроду сравнения.  [c.6]

Комплексное применение изоляции и катодной защиты дает высокий экономический и технический эффект. Иногда для внутренней поверхности днища и нижних боковых поясов вертикальных стальных резервуаров, кожухов трубопроводов, выполняемых методом продавливания, применяет только катодную защиту, так как защищаемая поверхность не столь велика, как у трубопроводов.  [c.74]

Контрольные стальные образцы определенного размера закапывают поблизости от трубопровода и соединяют в месте измерения с трубопроводом, имеющем катодную защиту, при помощи кабеля. Такие образцы имитируют искусственные дефекты в изоляционном покрытии труб. Ток защиты, воспринимаемый контрольным образцом, может быть измерен через кабельное соединение, а истинный потенциал можно определить с помощью электрода сравнения, расположенного перед контрольным образцом, если кратковременно прервать кабельное соединение [23].  [c.105]

Рассчитанные по этой формуле продольные удельные сопротивления сварных и бесшовных стальных труб представлены в табл. 3.5. В соответствии с принятыми предпосылками эти значения справедливы только для трубопроводов, смонтированных на сварке. Компенсаторы, арматура, резьбовые и зачеканиваемые муфты могут весьма существенно увеличить продольное сопротивление трубопровода, и поэтому для осуществления катодной защиты такие элементы необходимо закорачивать.  [c.109]

Стальные трубопроводы для транспортировки нефти, химических продуктов и газов под давлением более 0,4 МПа должны иметь катодную защиту [1—4]. Для повышения эксплуатационной надежности необходимо предусматривать катодную защиту также и трубопроводов низкого давления и водопроводов. Способ катодной защиты может быть с успехом применен и на существующих трубопроводах с высокой вероятностью поражения коррозией. При обычном сроке службы трубопровода катодная защита от коррозии позволяет экономично сохранить его сто-  [c.244]

При сооружении новых хранилищ необходимо следить за тем, чтобы изоляция резервуаров была проверена до их монтажа и чтобы обнаруженные дефекты были отремонтированы. Все наполнительные, заборные и вентиляционные трубы, имеющие металлический проводящий контакт с резервуаром-хранилищем и включаемые в систему катодной защиты, как и стальные шахты с куполом (если они имеются) и кронштейны для крепления резервуаров тоже должны иметь такую же тщательную изоляцию для защиты от грунта, как и сами резервуары. Как резервуары, так и подсоединенные к ним трубопроводы должны быть засыпаны со всех сторон землей, не содержащей камней. Предотвращение повреждений изоляции важно не только в том случае, когда резервуары не имеют катодной защиты при наличии катодной защиты это тоже обеспечивает равномерное распределение и низкую величину защитного тока. Поскольку затраты на защитные установки с увеличением требуемого тока возрастают, малую плотность защитного тока желательно иметь также и по экономическим соображениям. Необходимо также руководствоваться нормалями и предписаниями по монтажу резервуаров-хранилищ [2, 3].  [c.267]

Еще один способ, ставший известным в последнее время [9], открывает возможность катодной защиты крупных топливных хранилищ и топливозаправочных станций от наружной коррозии без электрического разъединения сооружений, связанных с топливом, от систем заземлителей и т. п. Этот способ основывается на том, что для систем заземлителей, которые должны укладываться на территории топливного склада, в качестве меры защиты от прикосновения к деталям, находящимся под электрическим напряжением, и для целей грозозащиты применяют материалы с достаточно отрицательным потенциалом. Так, полосовые стальные заземлители с толстым цинковым покрытием имеют стационарный потенциал по медносульфатному электроду сравнения около —1,1 В. При помощи станции катодной защиты от коррозии потенциал защищаемых резервуаров и трубопроводов снижается до стационарного по-  [c.278]


Анодные заземлители небольших станций катодной защиты могут быть установлены в непосредственной близости от кабельных каналов или протянуты в виде канатных анодов через свободные кабельные фидеры. Благодаря этому предотвращается влияние на другие трубопроводы. Изменение потенциала по длине трех кабелей связи, имеющих катодную защиту от анодного заземлителя в виде стального троса, показано на рис. 14.4.  [c.303]

Рис. 15.2. Дренаж блуждающих токов с частичной катодной защитой кабеля на напряжение 110 кВ в стальном трубопроводе высокого давления без отсоединения заземлителей станции (вариант а по рис. 15.Ц — заземлители станции 2 усиленный дренаж блуждающих токов Рис. 15.2. Дренаж блуждающих токов с частичной <a href="/info/6573">катодной защитой</a> кабеля на напряжение 110 кВ в стальном <a href="/info/319948">трубопроводе высокого давления</a> без отсоединения заземлителей станции (вариант а по рис. 15.Ц — заземлители станции 2 <a href="/info/183421">усиленный дренаж</a> блуждающих токов
Новые стальные трубопроводы для транспортировки газа, воды, нефтепродуктов обычно имеют покрытие, обеспечивающее хорошую электрическую изоляцию. Для таких трубопроводов во всех случаях целесообразно предусматривать катодную защиту fl7, 18] см. раздел 11. В области влияния железных дорог с тягой на постоянном токе даже и трубопроводы с хорошим изоляционным покрытием подвергаются опасности коррозии (см. раздел 4.3). Однако такие трубопроводы обычно не проходят около подстанций. Напротив, пересечения или сближения с линиями железных дорог постоянного тока наблюдаются довольно часто. Ввиду малости требуемого защитного тока и обычно уже предусмотренного или по крайней мере легко осуществимого электрического отсоединения от других низкоомно заземленных сооружений такие трубопроводы чаще всего можно эффективно защищать при помощи станций катодной защиты с регулируемым потенциалом. Если трубопроводы уже уложены, то области стекания блуждающих токов можно выявить путем измерения потенциалов труба—грунт. Целесообразно также дополнительное измерение потенциала рельс—грунт или разности напряжений между рельсом и трубопроводом. Если потенциал свободной коррозии неизвестен или если измерительных подсоединений к трубопроводу нет и поэтому неясно, где имеется наибольшая опасность коррозии блуждающими токами и есть ли вообще такая опасность, то области стекания тока можно определить путем  [c.335]

Однако и высоковольтные установки могут испытывать неблагоприятное воздействие от трубопроводов. Стальные трубопроводы обычно снабжают системой катодной защиты от коррозии. Однако ввиду очень хорошего качества электрической изоляции — покрытия труб — требуемый защитный ток очень невелик, и поэтому вредного воздействия на находящиеся поблизости высоковольтные заземлители едва ли можно ожидать. Все же анодные заземлители систем катодной защиты не следует располагать поблизости от мачт или заземлителей высоковольтных линий электропередач, так как через заземляющий (грозозащитный) трос вытекают блуждающие токи, которые могут оказать вредное влияние на сооружения, расположенные на некотором отдалении (см. раздел 11.3.3).  [c.425]

Для защиты от почвенной коррозии подземных стальных трубопроводов и резервуаров, заглубленных непосредственно в грунты весьма высокой, высокой и повышенной коррозионной активности, рекомендуется помимо изоляционных покрытий применять катодную поляризацию. Магистральные трубопроводы и отводы от них защищаются от почвенной коррозии изоляционными покрытиями и катодной поляризацией независимо от коррозионной активности грунта. Стальные трубопроводы, прокладываемые непосредственно в земле, подлежат защите путем катодной поляризации в анодных и знакопеременных зонах независимо от коррозионной активности грунта. При осуществлении катодной поляризации подземных сооружений должны быть выдержаны средние значения поляризационных (защитных) потенциалов в пределах, указанных в табл. 32, 33.  [c.49]

Стальные трубопроводы, прокладываемые непосредственно в земле, подлежат защите от коррозии, вызываемой влиянием электрифицированного транспорта на переменном токе, в опасных зонах независимо от коррозионной активности грунтов. Защиту этих трубопроводов следует осуществлять путем катодной поляризации или снижения интенсивности влияния переменного тока.  [c.54]

Заземляющий электрод ЗКА-140 предназначен для устройства анодных заземлений в установках катодной защиты трубопроводов от подземной коррозии. Заземлитель представляет собой стальной электрод с подключенным к нему проводником, упакованный вместе  [c.137]

Заземляющие электроды, упакованные с активатором, ЗЖК-41-ЕА и ЗЖК-12-КА предназначены для устройства анодных заземлений в установках катодной защиты трубопроводов от подземной коррозии, состоят из железокремниевого электрода-заземлителя и активатора, заключенных в стальной кожух. К железокремниевому электроду посредством контактного стержня подключен изолированный проводник. Техническая характеристика электродов ЗЖК дана в табл. 72. Активатор — коксовая мелочь г, удельным сопротивлением не более 0,20 ом-м.  [c.138]

Применение катодной защиты, например, на трубопроводах, в стальных резервуарах, судовых конструкциях и других устройствах, работающих в земле или воде, обеспечивает требуемую надежность.  [c.94]

Катодная защита достаточно широко и успешно используется в практике. Система для осуществления катодной защиты состоит из собственно защищаемого металлического объекта и анода. В качестве анодов обычно используются вышедшие из употребления стальные балки, рельсы и тому подобный лом. Отрицательный полюс источника постоянного тока (обычно выпрямитель) подсоединяется к защищаемому объекту, положительный полюс — к аноду (анодам). Для осуществления катодной защиты выпускаются стационарные установки - катодные станции. Катодная защита используется для предотвращения коррозии подземных сооружений во влажных грунтах, а также для защиты подводных объектов (корпуса морских судов, морские эстакады и портовые сооружения, подземные трубопроводы и др.).  [c.114]


Положительные результаты в борьбе с ракушечными обрастаниями дает применение катодной защиты путем подвешивания на изоляторах по оси трубопровода стального стержня — анода диаметром 30—40 мм, к которому подведен постоянный ток. Плотность тока на катоде (трубопроводе) в летний период должна составлять 0,4—  [c.222]

Станции катодной защиты бывают регулируемые и нерегулируемые. Нерегулируемые станции катодной защиты применяются в том случае, когда изменения сопротивления в цепи тока практически отсутствуют. Указанные станции работают в режиме поддержания постоянного потенциала или тока и применяются для защиты резервуаров, хранилищ, высоковольтных кабелей в стальной броне, трубопроводов и др.  [c.290]

Патент США, № 3973056, 1976 г. Описывается метод ингибирования растрескивания под напряжением стальных газопроводов для передачи газа под давлением. Ингибирование обеспечивается внешним защитным покрытием и средствами катодной защиты. Метод заключается в введении в среду, окружающую подземную часть трубопровода, по крайней мере одного из следующих ингибиторов одноосновного фосфата кальция, одноосновного фосфата натрия, триполифосфата натрия и силиката калия. Ингибирующий состав может вводиться в любое из покрытий трубопровода или в защитную ленту.  [c.259]

Катодная защита относится к наиболее действенным методам борьбы с коррозией. Ее используют для защиты химической аппаратуры, подземных металлических конструкций (трубопроводов, резервуаров, кабелей для передачи энергии и для связи), конструкций, погруженных в морскую воду (подводных частей судов, плавучих доков, стальных укреплений набережных, балластных емкостей и т. д.).  [c.52]

Статическая водородная усталость может наступить при катодной защите протяженных подземных сооружений. Такой случай, например, может встретиться при катодной защите трубопроводов, поскольку стальная труба испытывает давление на стенки жидких нефтепродуктов или газов, содержащих стимуляторы наводороживания [359, 360], а также при катодной защите газовых емкостей [376]. Например, в работе [376] было показано, что статическая прочность образцов, изготовленных из стальных труб с различным содержанием углерода (0,17—0,43 С 0,40—1,33 Мп), понижается в зависимости от плотности то ка катодной защиты и состава среды.  [c.137]

Особенно широкое применение в технике находит катодная поляризация (катодная защита), в результате которой потенциал сооружения смещается в отрицательную сторону, а скорость коррозии снижается. Катодная защита может быть осуществлена в двух вариантах с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) и путем применения протекторов из металлов с потенциалом более отрицательным, чем сталь. Такими металлами являются магний, цинк и алюминий. При присоединении протектора к трубопроводу образуется внутренний источник постоянного тока — гальванический элемент, катодом которого является стальной трубопровод, а анодом магниевый или цинковый протектор.  [c.93]

Рис. 17.17. Конструкция и установка анода из свинцового сплава в крупном стальном трубопроводе для катодной защиты от внутренней коррозии в морской воде [76] Рис. 17.17. Конструкция и установка анода из <a href="/info/326161">свинцового сплава</a> в крупном <a href="/info/361153">стальном трубопроводе</a> для <a href="/info/6573">катодной защиты</a> от внутренней коррозии в морской воде [76]
Положительные результаты в борьбе с ракушечными обрастаниями дает применение катодной защиты путем подвешивания на изоляторах по оси трубопроводов стального стержня — анода, к которому подведен постоянный ток (рис. 3.2).  [c.52]

Строительные сооружения или колодцы для водопроводных линий тоже часто выполняются из железобетона. В месте ввода трубопровода в стенку колодца может легко получиться контакт между трубой и стальной арматурой. В таком случае при сооружении станции катодной защиты для трубопровода достаточное снижение потенциала поблизости от колодцев не будет обеспечено [17]. На рис. 13.7 показано, что под действием коррозионного элемента воронка напряжений отодвигается от колодца на расстояние до нескольких метров. При плотности защитного тока около 5 мАх Хм для бетонной поверхности даже небольшого колодца, имеющего площадь бетона 150 м, требуется защитный ток порядка 0,75 А. Для большого распределительного колодца с площадью поверхности бетона 500 м нужен защитный ток в 2,5 А. Такие большие защитные токи могут быть локально подведены только при помощп дополнительных анодных заземлителей. Эти заземлители в таком случае размещают в непосредственной близости от ввода трубопровода в бетонную стенку колодца. Такая локальная катодная защита становится необходимым дополнением к обычной системе катодной защиты трубопровода, которая в районе железобетонного колодца в ином случае будет неэффективной.  [c.296]

Примером катодной защиты может служить покрытие, получаемое погружением стального листа в расплав цинка горячее цинкование) (см. разд. 13.3.3). Этот метод впервые запатентован во Франции в 1836 г. и в Англии в 1837 г. [4]. Однако имеются упоминания, что во Франции цинковые покрытия наносили на сталь еще в, 1742 г. [5]. Наложение электрического тока впервые было применено для защиты подземных сооружений в Англии и США в 1910—19J2 гг. [4]. С тех пор использование катодной защиты в этой области быстро распространялось, и в настоящее время этим методом эффективно защишают от коррозии тысячи километров подземных трубопроводов и кабелей. Катодную за-  [c.216]

Металл, помещённый в электролит, всегда имеет естественный алектродный потенциал. На основании экспериментальных данных оыло установлено, что естественным потенциал г.шогих стальных подземных трубопроводов ле>.111т в пределах от минус 0,35 В до минус 0,65 Вм Поэтому при расчёте катодном защиты, если нет замеренных данных, естественный потенциал стали принимают равным минус 0,55 В по отношению к медносульфатному электроду сравнения (Ы.С.Э) Потенциал защищаемой конструкции, при котором ток коррозии практически равен нулю, называется защитным потенциалом. Практически стальные подземные сооружения становятся защищёнными на 80...90 если потенциал равен минус 0,85 В. Эта величина принята в нашей стране как критерий минимального защитного потенциала. Однако указанный минимальный потенциал достаточен только в случае, если отсутствует анаэробная биокоррозия. Цри наличии последней защитный потенциал должен быть более отрицательным, равным минус 0,95В.  [c.40]

Для станций катодной защиты от коррозии изготовляют защитные установки номинальной выходной мощностью примерно от 10 Вт для цистерн (бензоколонок) и коротких трубопроводов до 20 кВт для крупных подводных стальных сооружений. Защитные установки для трубопроводов обычно имеют выходную мощность в пределах 100—600 Вт. Рекомендуется принимать номинальный ток защитной установки примерно вдвое большим, чем требуемый защитный ток по расчету, чтобы иметь достаточный запас на будущее расширение системы, в случае возможного снижения сопротивления изоляции, увеличения блуждающих токов и других изменений. Требуемое номинальное напряжение на выходе определяется по величине необходимого защитного тока и сопротивлению цепи анодный заземлитель—грунт — объект защиты, которое принимается по оценке или мод5ет быть измерено после окончательной установки анодных заземлителей. По напряжению на выходе тоже необходимо предусматривать достаточный запас. По номинальным значениям тока и напряжения на выходе может быть получено номинальная выходная мощность.  [c.219]


При сооружении хранилища с одностенными резервуарами подготовительные работы начинаются с принятия решения (согласно нормали TRbF 408 Правила катодной защиты от коррозии подземных резервуаров и их эксплуатационных трубопроводов из стали [11]) о том, является ли катодная защита обязательной или только целесообразной по соображениям экономичности (сохранности оборудования). Для оценки опасности коррозии следует руководствоваться общими указаниями, изложенными в разделе 4. У резервуаров-хранилищ опасность коррозии обусловливается прежде всего возможностью образования коррозионного элемента в контакте с подсоедипительными трубопроводами, например трубопроводами из меди, коррозионностойкой стали или из проржавевших или забетонированных стальных труб, а также в контакте с железобетонными конструкциями.  [c.266]

Резервуары и их эксплуатационные трубопроводы, оборудуемые системой катодной защиты, должны быть электрически изолированы от всех других металлических сооружений. В случае резервуаров-хранилищ это делается установкой изолирующих трубных вставок (фланцев), которые для обеспечения полной защиты должны располагаться так, чтобы все эксплуатационные стальные трубопроводы, соединенные с резервуарами, а также и подсоединительные изолированные медные трубопроводы, если они уложены в землю, могли бы быть включены в систему катодной защиты. Таким образом, при вводах в здания изолирующие фланцы должны располагаться внутри зданий и в местах отбора топлива, например у опор бензозаправочных колонок.  [c.267]

Резервуар с мазутом (мазутохранилище), нуждающийся в защите, располагается (рис. 12.2) под землей поблизости от здания. Граница имеющегося в распоряжении земельного участка проходит на расстоянии нескольких метров от резервуара со стороны, противоположной зданию. Стальные трубопроводы, подсоединенные к мазутному резервуару, которые тоже должны быть подключены к системе защиты, имеют изоляционное покрытие. Изолирующие фланцы, необходимые для электрической изоляции мазутного резервуара, располагаются внутри здания. Для расчета системы катодной защиты приняты следующие параметры, полученные при пробном пуске системы емкость резервуара (двухстенная конструкция) 20 м площадь поверхности резервуара и трубопроводов 50 м сопротивление растеканию тока с мазутного резервуара в грунт 30 Ом сопротивление изолирующих фланцев (вставок) 28 Ом удельное электросопротивление грунта в месте расположения анодных зазем-лителей, измеренное при расстояниях между зондами 1,6 и 3,2 м (среднее значение для восьми измерений) 35 Ом-м требуемый защитный ток (при потенциале выключения по медносульфатному электроду l/ u/ usOi =—плотность защитного тока 200 мкА-м .  [c.273]

Если для катодной защиты подземных резервуаров-хранилищ и трубопроводов поблизости от рельсовых путей требуется сравнительно большой защитный ток, то подводить его следует через несколько анодных заземлителей. Это необходимо для уменьшения вредного влияния на другие подземные сооружения, количество которых поблизости от полотна железной дороги весьма велико. При ограниченности места и небольшой токоотдаче каждого анодного заземлителя хорошо зарекомендовали себя забиваемые анодные заземлители, например в виде круглых стальных прутков.  [c.283]

Магистральный газопровод включает в себя головные сооружения стальной трубопровод с ответвлениями, запорной арматурой и линейными сооружениями компрессорнь(е станции дома линейных ремонтников и аварийно-ремонтные пункты устройства линейной и стационарной связи установки катодной, протекторной и дренажной защиты вспомогательные сооружения газораспределительной станции.  [c.13]

Коррозионное растрескивание под напряжением может быть причиной повреждения и подземных стальных трубопроводов. Это наблюдалось на трубопроводах, работающих при высокой температуре, например в районных теплосетях, а также в тех частях газопроводов высокого давления, которые расположены после компрессорных станций. В последнем случае результирующие растягивающие напряжения обусловлены давлением газа в трубах. Коррозионное растрескивание под напряжением становится возможным, если в почве присутствуют ионы H Oj, ОН" или NOg. Катодная защита может усиливать опасность отчасти потому, что электродный потенциал трубы при ней поддерживается на уровне, способствующем растрескиванию, а частично потому, что на поверхности катода образуются ионы ОН".  [c.106]

При прокладке магистральных трубопроводов в труднодоступных районах часто отсутствуют линии электропередачи, так как сооружение для питания установок катодной защиты связано с больщими затратами. В этом случае применяют протекторную защиту (рис. 16). Принцип действия ее заключается в том, что разрушению подвергается специально установленный анод (протектор), имеющий более электроотрицательный потенциал, чем защищаемое стальное сооружение, которое служит катодом в образовавщейся гальванической паре. Электролитом в этом случае является грунт, в котором укладывают трубопроводы и протекторы. Протекторы рекомендуется устанавливать в грзпггах с удельным сопротивлением до 50 Ом м.  [c.78]

На этом принципе основана защита бикарбонатом кальция стальных трубопроводов, нашедшая широкое применение в промышленности. Благодаря защелачиванню воды у поверхности металла, возникающему в результате катодной реакции, жесткая вода, содержащая бикарбонат кальция, способствует отложению на поверхности металла пленки из карбоната кальция и замедлению коррозии. При этом следует иметь в виду, что эффективность защиты зависит от температуры воды, поскольку растворимость карбоната кальция с температурой увеличивается и сформированная пленка может начать растворяться. По этому же принципу действуют и соли цинка.  [c.50]

Опасность охрупчивания стали при катодной защите различных стальных сооружений (мостов, портовых сооружений, кораблей, трубопроводов, оборудования химических и нефтеперерабатывающих заводов), работающих в агрессивной среде, особенно среде, содержащей сероводород и сульфиды, кислоты, необходимо всегда иметь в виду и принимать соответствующие меры к его предотвращению. Ущерб, наносимый иа-водороживанием при катодной защите, может конкурировать с ущербом, причиненным коррозией. Например, группа судов американского флота типа Liberty , находившаяся в бухте на консервации под катодной защитой, оказалась непригодной к дальнейшему использованию вследствие наводороживания подводной части корпусов.  [c.137]

Для защиты от почвенной коррозии подземных стальных трубопроводов и резервуаров, заглубленных непосредственно в грунт весьма высокой, высокой и повышенной коррозионной активности, помимо применения изоляционных покрытий следует осуществлять катодную поляризацию сооружений. Магистральные нефтегазопродукто-проводы и отводы от них, стальные трубопроводы компрессорных, газораспределительных, перекачивающих и насосных станций, трубопроводы нефтегазопромыслов и подземных хранилищ газа подлежат комбинированной защите от коррозии покрытиями и средствами электрохимической защиты независимо от коррозионной активности грунта. Обсадные колонны скважин допускается  [c.232]


Смотреть страницы где упоминается термин Катодная защита стальных трубопроводов : [c.16]    [c.196]    [c.187]    [c.108]    [c.304]    [c.274]   
Водоснабжение (1948) -- [ c.145 ]



ПОИСК



V катодная

Катодная защита

Стальные трубопроводы

Трубопроводы катодная защита



© 2025 Mash-xxl.info Реклама на сайте