Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Превращения упорядочение

Кроме первичных превращений, т. е. превращений, связанных с переходом из жидкого состояния в твердое, в сплавах часто наблюдаются вторичные превращения, происходящие в твердых сплавах при их нагреве или охлаждении. Примером таких превращений являются изменение растворимости компонентов, аллотропические превращения, упорядочение твердых растворов. Эти превращения имеют весьма важное значение на практике, так как обусловливают возможность термической обработки сплавов.  [c.160]


Процесс упорядочения является диффузионным процессом (превращение сопровождается перемещением атомов), поэтому медленное охлаждение способствует упорядочению.  [c.106]

При изотермическом превращении в условиях средних температур происходит рост отдельных кристаллов в продольном и поперечном направлениях, однако скорости роста значительно ниже, чем при мартенситном превращении. Возникновение рельефа на полированной поверхности шлифа указывает на то, что а-фаза когерентно связана с аустенитом, а переход у->а происходит вследствие упорядоченного перераспределения атомов подобно мартенситному превращению.  [c.106]

Промежуточное превращение может протекать в сплавах, содержащих элементы существенно различные по скорости диффузии (например, в сплавах Ре и С). Так при понижении температуры превращения аустенита достигается незначительная скорость диффузии атомов Ре (или легирующих элементов) и одновременно значительная скорость диффузии С. Наступает промежуточное превращение, при котором взаимосвязанные и упорядоченные перемещения атомов металлов сочетаются с диффузионным перераспределением С в аустените.  [c.106]

Упорядоченные превращения при изотермическом отпуске мета-стабильной стали, контролируемые золотой пропорцией.  [c.205]

В разделе 1.4.4.2 говорилось, что под термином "диссипация" мы понимаем процесс взаимного превращения энергий, а не только превращения различных видов более упорядоченной энергии в тепловую с последующим се рассеянием. Не смотря на такую оговорку, рассматриваемые здесь примеры остаются случаями диссипации.  [c.274]

Такой мерой является нарушение симметрии системы. В рассматриваемом случае полиморфного превращения кристалла при понижении температуры возможна утрата симметрии, поскольку кубическая решетка обладает более высокой симметрией. Аналогично, кристалл, возникающий после охлаждения жидкости, менее симметричен (более упорядоченная система), чем исходная жидкость жидкость после возникновения в ней конвекционных течений в задаче Бенара менее симметрична, чем та же покоящаяся жидкость ферромагнетик, где все магнитные моменты отдельных атомов ориентированы в одном направлении, менее симметричен парамагнетика со случайным направлением этих моментов. И вообще, возникновение любой пространственной или временной структуры нарушает однородность среды, т. е. симметрию по отношению к трансляциям в пространстве или во времени. Поэтому турбулентное течение жидкости, возникающее при сильной неравновесности и характеризуемое появлением сложной структуры (самоорганизация), является более упорядоченным (менее хаотическим), чем ламинарное течение.  [c.373]


Пластичность никеля при 20 С хорошо известна и не вызывает сомнений, тогда как данные о высокотемпературной пластичности у различных авторов (А. А. Пресняков и др) отличаются. Красноломкость никеля при 900—1000 °С объясняется развитием полиморфных превращений, связанных с процессами упорядочения изотопов с атомной массой 58. 60, 61, 62. 64 [1].  [c.154]

В области теоретического металловедения за истекшие 50 лет разработаны многочисленные диаграммы состояния двойных и тройных систем. Установлена связь между диаграммами состояний и диаграммами, показывающими зависимость физических свойств сплавов от их химического состава (правила Н. С. Курнакова). Сформулировано понятие о сингулярных точках и законы образования упорядоченных твердых растворов (Н. С. Кур-наков), установлено размерное и структурное соответствие в когерентных фазах (правило П. Д. Данкова), открыты законы кристаллизации слитков (Н. Т. Гудцов), созданы теории изотермической обработки стали (С. С. Штейн-берг), мартенситного превращения твердых растворов и отпуска закаленной стали (Г. В. Курдюмов), модифицирования сплавов (М. В. Мальцев), образования эвтектик и жаропрочности сплавов (А. А. Бочвар) и многие другие.  [c.190]

Старением металлов и сплавов следует считать процессы изменения их свойств в зависимости от времени, связанные с любыми превращениями металлов и сплавов в твердом состоянии. По данным Я. С. Уманского и других исследователей к основным видам превращений в твердом состоянии относятся полиморфное (аллотропическое) превращение, мартенситное превращение и распад мартенситной структуры, растворение в твердом состоянии и распад пересыщенных твердых растворов, упорядочение и разупрочнение твердых растворов, образование твердого раствора из эвтектоидной смеси и эвтектоидный распад.  [c.8]

Без изменения химического состава фаз протекают полиморфные превращения и превращения мартенситного типа (являющиеся особым случаем полиморфного превращения), а также упорядочение и разупрочнение твердых растворов.  [c.8]

Среди перечисленных видов энергии, которые могут сравниваться по упорядоченности, т. е. направленности движения, по концентрации, способности к превращению и скорости превращения в другие виды энергии, способности к накоплению, тепловая энергия занимает особое место. Все виды энергии могут превращаться непосредственно или косвенно в тепловую энергию. Закономерности превращения одних видов энергии в другие в наиболее общей форме устанавливаются основными законами термодинамики и физики. В термодинамике и статистической физике рассматриваются следующие характеристики энергии ве-  [c.37]

Если гетерогенная система не находится в состоянии равновесия, то в ней возможен переход из одной фазы в другую, например, переход вещества из жидкого состояния в твердое или газообразное, переход из одной кристаллической формы в другую. К фазовым превращениям относятся и такие явления, как переход вещества из ферромагнитного состояния в парамагнитное, переход металлов в сверхпроводящее состояние, переход из неупорядоченного состояния в металлических сплавах твердых растворов в упорядоченное состояние, переход гелия I в гелий II.  [c.175]

Проблема описания конденсированной среды, подверженной интенсивному внешнему воздействию, является одной из важнейших в современной физике. В последние годы в этом направлении были достигнуты значительные успехи (см. [16, 17, 58, 73, 74, 76-82, 86]). В частности, объяснены основные особенности микроскопической картины структурных фазовых превращений на атомном уровне (например, сегнетоэлектри-ческие и мартенситные превращения, упорядочение и распад твердых растворов). Характерная особенность теории структурных превращений состоит в их разделении на два класса — переходы типа смещения и порядок—беспорядок. Такая классификация определяется координатной зависимостью потенциальной энергии атома и т) для переходов типа смещения реализуется одноямный потенциал (рис. 64 а), а для переходов порядок—беспорядок — двуямный (рис. 646). Соответственно, в первом случае переход сводится к смещению минимума зависимости 7(г), а во втором атомы перераспределяются между минимумами, отвечающими различным координатам К,, Кз.  [c.224]


Величина коэрцитивной силы зависит от структурного состояния сплавов и величины внутренних напряжений. Сплавы — твердые растворы и чистые металлы, как правило, характеризуются весьма незначительной величиной коэрцитивной силы, тогда как многофазные сплавы и осоЗенно сплавы, содержащие мелкодисперсные включения избыточных фаз, обладают более высокой коэрцитивной силой. Наиболее высокие значения коэрцитивной силы достигаются в сплавах, имеющих превращения в твердом состоянии (образование мартенсита при закалке стали, распад пересыщенных твердых растворов л превращение упорядоченных твердых. растворов в неупорядоченные).  [c.160]

К старению металлов и сплавов следует относить все процессы изменения во времени их свойств, связанные с превращениями металлов и сплавов в твердом состоянии. К основным видам превращений в твердом состоянии относятся сшлотропическое превращение, мартенситное превращение и распад мартенситных твердых растворов, упорядочение и разупрочнение твердых растворов, образование твердого раствора из эвтектоидной смеси.  [c.125]

Существование кластеров в конденсируемых средах указывает на протекание процессов упорядочения с образованием локальных областей, обладающих ближним порядком, задолго до омента, когда начинается спонтанное образование и рост зародышей (центров кристаллизации) новой фазы. В связи с этим возникает ряд дополнительных вопросов. 1Сакова концентрация кластеров в момент фазового перехода и до какой их концентрации можно говорить об элементарных актах роста Каковы элементарные акты упорядочения в структуре твердых тел, претерпевающих фазовые превращения под воздействием внешних нагрузок  [c.237]

Уравнения Эренфеста связывают скачки вторых производных термодинамического потенциала не только при фазовых переходах второго рода, но и в случае целого ряда фазовых переходов первого рода. Примером такого перехода первого рода является переход из упорядоченного состояния в неупорядоченное в сплавах АиСиз, Au u и др. Характерной особенностью этих фазовых переходов является постоянство скачков объёма и энтропии на всей линии превращения  [c.166]

Платина — кобальт. Платина с кобальтом образует непрерывный ряд твердых растворов. Минимум кривой плавкости соответствует примерно 50% Со при 1450° С (фиг. 26). При охлаждении неупорядоченного твердого раствора с кубической гранецентрированной решеткой в области 10—30% весовых Со наблюдается образование неупорядоченной фазы с тетрагональной гранецентрированной решеткой.. Максимум температуры перехода 825° С соответствует составу соединения Pt o (23,18% Со). При дальнейшем охлаждении ниже 510° С происходит упорядочение этой фазы. В сплавах, содержащих более 70% весовых Со, при охлаждении ниже 600—400° С образуется твердый раствор с гексагональной плотиоупакованной решеткой на основе а-кобальта. Температура магнитного превращения кобальта 1115° С плавно падает с увеличением содержания платины. Сплав с 23,2% Со, закале1И1ый с 1000°С, имеет коэрцитивную силу 0,5 э и является магнитномягким материалом. После отпуска в течение 30 мин. при 650° С коэрцитивная сила возрастает до 2000 э, а после отпуска при 700° С — до 3700 э. Сплав с 23,2% Со применяется для постоянных магнитов малогабаритных инструментов. Сплавы, содержащие малые количества Со и Rh, применяются в качестве катализатора при окислении аммиака.  [c.415]

Проанализированы и обобщены результаты исбледований физических свойств структурно-неустойчивых сверхпроводящих соединений. Изложены особенности нестабильных решеток высокотемпературных сверхпроводящих соединений, их низкотемпературного превращения и связанного с ним изменения критических параметров сверхпроводимости, атомного упорядочения. Рассмотрены вопросы легирования, отклонения от стехиометрического состава и воздействия радиации на неустойчивость решетки и на сверхпроводящие свойства различных соединений.  [c.48]

Изложены современные представления о дислокационной структуре металлов и сплавов и об элементарных процессах их пластической деформации. Рассмотрены типы дислокаций в сверхструктурах. Приведена феноменологическая схема описания пластической деформации с учетом нескольких типов дислокационных превращений. Исследована физическая природа явления термического упрочнения упорядоченных сплавов. Описан эффект доменнограничного упрочнения в слоистых сверхструктурах.  [c.51]

Рассматриваются различные процессы упорядочения и распада, происходящие па подрешетке междоузлш" кристалла, причем в этих процессах наряду с атомами внедрения могут принимать участие и вакантные междоузлия. Характерной особенностью таких процессов, в частности разнообразных фазовых превращений, явля-  [c.6]

Особую роль в коррозионном растрескивании титановых сплавов играют газовые примеси — водород, кислород, азот, углерод, кремний. Чрезмерное содержание их может вызвать коррозионное растрескивание даже технически чистого титана. Так, титан, содержащий до 0,12 % Оа, абсолютно устойчив к коррозионному растрескиванию, а титан, содержащий 0,38 % Оа, растрескивается в 3 %-ном растворе ЫаС1. Сплав Т1 —6 % А1—4 % V (типа ВТ6) обладает высоким сопротивлением к коррозионному растрескиванию при содержании в нем менее 0,1 % Оа. Однако при концентрации более 0,13—0,14 % Оа у этого сплава наблюдаются низкие пороговые значения [ 31 ]. Отрицательное влияние кислорода на сопротивление коррозионному растрескиванию объясняют облегчением процессов упорядочения и плоскостного сдвига. Влияние азота и углерода практически не изучено. Известно лишь, что азот, как и кислород, увеличивает склонность к коррозионному растрескиванию. Кислррод и азот при излишнем их содержании в сплаве вызывают коррозионное растрескивание, которое трудно уменьшить специальной термообработкой (закалка с температуры превращения а + Угле-  [c.39]


Микроструктура при отжиге претерпевает последовательность структурных превращений, подобную рассматриваемой выше для ИПД Ni. Однако характерным для ИПД NiaAl явилось то, что дальний порядок начинает восстанавливаться в узком температурном интервале вблизи 530 К, т. е. на стадии возврата (рис. 3.15<9). Это упорядочение не является полным, однако дальнейшее увеличение параметра дальнего порядка происходит только при намного более высоких температурах, близких к 1300 К, когда зерна вырастают до относительно больших размеров. Хотя физическая природа разупорядочения интерметаллидов при ИПД и последующее их переупорядочение при нагреве требуют дальнейших исследований, важно отметить, что, следуя полученным результатам, становится ясным, что переупорядочение в NiaAl обусловлено, в первую очередь, не рекристаллизационными процессами, а процессами возврата, связанными с перестройками дислокационной структуры на границах и в теле зерен.  [c.143]

С повышением температуры переход от внутри- к межзерен-ному разрушению в большинстве случаев смеш,ается в область более высоких скоростей деформации. Считается [79], что межзеренное разрушение возникает при температуре, равной или превышающей температуру эквикогезии (лгО.бГпл). Это объясняется тем, что при этой температуре граница претерпевает фазовые превращения типа упорядочение — разупорядочение [4]. Однако, поскольку переход от внутризеренного разрушения к межзеренному в значительной степени определяется и скоростью деформирования, достижение температуры эквикогезии не всегда приводит к межзеренному разрушению. Существует мнение, что разрушение по границам зерен подавляется и при очень низких скоростях деформирования, что объясняется зато скольжения из-за низкого уровня напряжения [111  [c.88]

С осуществлением спецкализацин крупных кузнечных цехов открываются возможности упорядочения специализации цехов средней мощности с целью превращения их в базовые производства, специализированные на выпуске ограниченного числа деталей.  [c.208]

На свойства неметаллических материалов существенное влияние оказывают их структура — аморфная или кристаллическая и особенности физического строения. Как правило, наличие кристаллической структуры, обусловленной упорядоченным расположением элементарных структурных единиц относительно друг друга, способствует увеличению плотности и повышению механических свойств материалов, повышению их устойчивости к атмосферным воздействиям и к агрессивным средам, а также определяет более четкий характер температурных интервалов их фазовых превращений tn.i, tnwi и т. п.).  [c.9]

Исследований показали, что а -у превращение наблюдается только в сплавах, содержащих 2% А1. Критические точки A i и Ас, оказались равными 745—780 С и 845—885 С. Закалка этих сплавов производилась с температуры 900° С. Остальные сплавы после отжига hm jih структуру феррит -f карбиды и интер-металлиды. Упрочнение этих сплавов при термической обработке (закалка, старение) вызывается дисперсионным твердением, а возможно и упорядочением. Были исследованы их структура и механические свойства после закалки с разных температур (820—1100° С) и установлена температура закалки. Поскольку стали предназначены для азотирования, в таблице приведены свойства после закалки и ложного азотирования.  [c.185]

Естественно, что такое событие, как установление радикально новой точки зрения на энергетические превращения, не могло не вызвать и революцию в терминах. Но дело было настолько серьезным, что не могло ограничиться только терминами упорядочению терминов должно было предшествовать упорядочение понятий. Об этом хорошо Б свое время сказал А. Лавуазье, считавший, что каждая наука состоит из ряда фактов, представлений о них (т. е. понятий) и сдов, их выражаюш,их (т. е. терминов). Действительно, даже в работах Г. Гельмгольца, не говоря уже о Майере и Джоуле, отсутствовали такие привычные для нас термины, как энергия и работа понятия сила и теплота использовались совсем не в том смысле, который соответствует их однозначной научной трактовке.  [c.81]

Поясним это на простом примере — тепловой электростанции. В ней протекает целая цепочка энергетических превращений. Сначала химическая энергия топлива и окислителя (кислорода воздуха) превращается во внутреннюю энергию раскаленных продуктов сгорания затем эта энергия в форме теплоты передается воде и превращается во внутреннюю энергию пара. В свою очередь энергия пара в турбине превращается в механическую, а та — уже в электрическую. Часть внутренней энергии пара отводится из конденсатора охлаждающей водой и выбрасывается в окружающую среду. В целом вся эта последовательность укладывается в вариант 4 схемы энергетических превращений на рис. 3.7. Часть энергии (от 35 до 40 %) преобразуется в полностью упорядоченную, безэнтропийную электроэнергию, зато другая, большая ее часть, низкокачественная, с повышенной энтропией, сбрасывается в окружающую среду. Совершенно очевидно, что чем больше возрастание энтропии на каждом этапе энергетических превращений (т. е. чем хуже они организованы), тем больше будет и суммарный рост энтропии. А это неизбежно приведет к уменьшению безэнтропийной доли энергии на выходе (т. е. электроэнергии) и увеличению доли сбрасываемой высокоэнтропийной теплоты. В электроэнергию перейдет не 35—40 % исходной химической энергии, а меньше — 30, 25 % и т. д. То же самое будет и в любой другой технической системе, что бы она ни производила — теплоту, холод, каучук или металл...  [c.155]

Мы уже видели, что любая упорядоченная энергия (с энтропией 5 = 0 (рис. 3.7) может быть всегда полностью переведена в любой другой вид энергии напротив, если энергия в той или иной степени неупорядочена (S> >0), то на ее способность к превращениям второй закон налагает определенное ограничение. Чем больше эта энтропия, тем энергия менее качественна и тем меньше высококачественной (безэнтропийной) энергии (например, работы или электроэнергии) она в данных условиях может дать. Это означает, что безэнтропийная энергия может служить как бы эталоном, общей мерой качества, работоспособности любого вида энергии. Она и была названа эксергией. В такой (общей мере) эксергии, конечно, спрятана внутри энтропия как некая базовая величина это необходимо, но недостаточно. Кроме нее в эксергию неизбежно должны входить и другие величины, характеризующие как энергию, так и ту окружающую среду,в которой энергия используется.  [c.156]


Смотреть страницы где упоминается термин Превращения упорядочение : [c.13]    [c.204]    [c.230]    [c.321]    [c.389]    [c.147]    [c.24]    [c.117]    [c.215]    [c.324]    [c.64]    [c.30]    [c.14]    [c.15]    [c.298]    [c.184]    [c.186]    [c.11]    [c.170]   
Физическое металловедение Вып II (1968) -- [ c.288 , c.291 ]



ПОИСК



Аналитические применения (фазовый и химический аналиФазовые превращения и упорядочение

Превращение

Упорядочение

Фазовые превращения и упорядочение



© 2025 Mash-xxl.info Реклама на сайте