Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитная восприимчивость парамагнитная

Магнитная восприимчивость парамагнитного вещества подчиняется закону Кюри X = С Т С — константа), а внутренняя энергия определяется выражением U = аТ (а — положительная константа).  [c.102]

Для измерения температуры методом магнитной термометрии предпочитают измерять величины, пропорциональные магнитной восприимчивости парамагнитных солей. Для измерений выбирают парамагнитные соли, восприимчивость которых приблизительно подчиняется закону Кюри — Вейсса в нужной области температур. Если обозначить измеряемую восприимчивость соли (на 1 см ) через то  [c.245]


Магнитная восприимчивость парамагнитной соли  [c.194]

Величину магнитной восприимчивости определяют различными методами. Ниже приводится метод определения магнитной восприимчивости парамагнитных сплавов, разработанный в Московском институте стали имени Сталина.  [c.155]

Удельная магнитная восприимчивость парамагнитных газов зависит от температуры. Это объясняется тем, что в нейтральном состоянии направление осей магнитных моментов молекулярных круговых токов ориентированы хаотично, но при наличии внешнего магнитного поля оси магнитных моментов стремятся расположиться вдоль этого поля. Тепловое движение отдельных молекул и атомов внутри вещества мешает этому, и, следовательно, эффект уменьшается с ростом температуры. Это положение лежит в основе закона Кюри, согласно которому для кислорода % обратно пропорциональна абсолютной температуре Т  [c.587]

Объемная магнитная восприимчивость парамагнитных газов с учетом выражений (21-4-2), (21-4-3) и (21-4-6) равна  [c.587]

Парамагнитная восприимчивость х многих веществ, содержащих металлы переходной группы и редкоземельные элементы, хорощо описывается законом Кюри, согласно которому х обратно пропорциональна Т. Однако вычислить магнитную восприимчивость реального кристалла очень сложно и хотя роль основных влияющих факторов видна вполне ясно, детали проблемы трудны и часто недостаточно понятны. В основном по этой причине магнитная термометрия не применяется для первичных измерений температуры, хотя существует и вторая трудность, состоящая в том, что абсолютные измерения магнитной восприимчивости очень сложны. Как мы увидим ниже, константы в функциональной зависимости х от 7 приходится находить градуировкой по другим термометрам. Хотя магнитная термометрия не является первичной в строгом смысле, она занимает важное место в первичной термометрии, выступая в качестве особого интерполяционного и в некоторых случаях экстраполяционного термометра. Рассмотрим кратко основные факторы, определяющие температурную зависимость парамагнитной восприимчивости конкретных кристаллов и это сделает ясной специфическую роль магнитной термометрии.  [c.123]

Магнитные свойства. Наибольший интерес представляют магнитные свойства аморфных сплавов переходных (Мп, Fe, Со, Ni,. ..) и редкоземельных (Ей, Gd и т. д.) металлов с другими металлами и металлоидами. При достаточно высоких температурах эти сплавы находятся в парамагнитном состоянии. Температурные зависимости магнитной восприимчивости хорошо описываются законом Кюри — Вейсса. При понижении температуры ниже 9 в них возникает магнитное упорядочение. Магнитное упорядочение аморфных сплавов может быть ферромагнитным, антиферромагнитным, а также ферримагнитным. В ряде случаев наблюдается состояние спинового стекла. Спиновое стекло характеризуется замораживанием спиновых магнитных моментов в случайных направлениях при температуре ниже некоторой характеристической. Заметим, что состояние спинового стекла обнаружено также и в некоторых кристаллах.  [c.374]


Эффект Коттона — Мутона во многом аналогичен эффекту Керра. По своим магнитным свойствам молекулы делятся на парамагнитные молекулы (р>1), обладающие постоянным магнитным моментом, и диамагнитные молекулы (н<1), которые не имеют постоянного магнитного момента, но могут приобретать его в магнитном поле. Анизотропия среды под действием магнитного поля возникает либо благодаря ориентации парамагнитных молекул (по аналогии с полярными молекулами), либо благодаря анизотропии магнитной восприимчивости  [c.69]

Для парамагнетиков J=v.H. Магнитная восприимчивость идеальных парамагнитных веществ, по закону Кюри, обратно пропорциональна температуре  [c.195]

Для изотропных парамагнетиков = Магнитная восприимчивость идеальных парамагнитных веществ по закону Кюри об-  [c.132]

В табл. 26.1 приведены значения удельной магнитной восприимчивости диа-и парамагнитных веществ, для которых температурная зависимость восприимчивости не описывается законом Кюри — Вейсса.  [c.594]

Антиферромагнетиками называют материалы, в которых во время обменного взаимодействия соседних атомов происходит антипа-раллельная ориентация их магнитных моментов. Так как магнитные моменты соседних атомов взаимно компенсируются, антиферромагнетики не обладают магнитным моментом, а характеризуются магнитной восприимчивостью, которая близка к восприимчивости парамагнетиков. Выше некоторой критической температуры, которая получила название температуры Нееля (аналогична температуре Кюри), магнитоупорядоченное состояние антиферромагнетика разрушается и он переходит в парамагнитное состояние.  [c.87]

Сообщалось, что удельная магнитная восприимчивость керамики из MgO, подобно другим соединениям [204, 228], уменьшается при облучении нейтронами, число парамагнитных дефектов при этом растет.  [c.168]

По величине и знаку магнитной восприимчивости все тела можно разделить на 3 группы (табл. 11.1) диамагнитные, парамагнитные и ферромагнитные.  [c.286]

Магнитные и электрические методы дефектоскопии. Магнитные методы контроля качества продукции применяются для обнаружения поверхностных и скрытых дефектов в материалах, обладающих положительной магнитной восприимчивостью. Магнитные методы дефектоскопии основаны на свойстве металла быстро намагничиваться и размагничиваться или создавать разную магнитную индукцию в местах дефекта. Поэтому наиболее успешно эти методы применяются для ферромагнитных материалов с большой магнитной проницаемостью и менее — для парамагнитных тел, так как в этом случае магнитное насыщение наступает в полях чрезвычайно большой напряженности. Материалы с отрицательной магнитной восприимчивостью не подвергаются магнитным методам контроля.  [c.258]

Антиферромагнитные вещества характеризуются кристаллическим строением, небольшим коэффициентом магнитной восприимчивости (х га 10 н-10 ), постоянством X В Слабых полях и сложной зависимостью от Я в сильных ПОЛЯХ, специфической зависимостью от температуры, а также температурой точки Нееля, выше которой вещество переходит в парамагнитное состояние.  [c.7]

Магнитная восприимчивость для парамагнитных и диамагнитных веществ лежит в пределах от 10 до 10" , поэтому членом 4-К1 в уравнении (51,8) можно пренебречь, тогда  [c.196]

У некоторых парамагнитных металлов (твердые и жидкие щелочные металлы, щелочноземельные металлы), парамагнетизм которых вызывается спиновыми магнитными моментами электронов проводимости, магнитная восприимчивость X почти не зависит от температуры.  [c.43]

Влияние дискретности электронных состояний на магнитную восприимчивость малых частиц парамагнитных металлов с уче-  [c.91]

Все материалы по величинам магнитных восприимчивости и проницаемости делятся на ферромагнитные (ц> 1, к > 0), парамагнитные (ц > 1, к > 0) и диамагнитные (ц < 1, к < 0).  [c.102]


Классификация происходит под действием на частицы магнитных сил с одной стороны и сил веса или аэродинамического (гидравлического) сопротивления - с другой. Равновесие этих сил организуют таким образом, чтобы частицы с большей магнитной восприимчивостью ( магнитные ) двигались в сторону действия магнитной силы, а с меньшей ( немагнитные ) - в противоположную ей сторону. Ферромагнитные и парамагнитные частицы перемещаются вдоль силовых линий магнитного поля в сторону возрастания его напряженности, а диамагнитные - выталкиваются в сторону его убывания.  [c.174]

В 1941 г. Блини и Холл [7], используя магнитный термометр, проверили шкалу 1939 г. и нашли среднее отклонение температуры, измеряемой магнитным термометром, от температуры, определяемой по шкале 1939 г., — 7 зэ = +0,003°. Они пришли к выводу, что это отклонение, лежащее в пределах экспериментальных ошибок, может быть объяснено тем, что магнитная восприимчивость парамагнитной соли не точно подчинялась закону Кюри.  [c.235]

Парамагнитные переходные лгеталлы. Мы уже видели в 29, что зонная теория не может объяснить даже полуколичественна ни удельную теплоёмкость, ни магнитную восприимчивость парамагнитных переходных металлов. Это ещё раз подтверждает высказанное выше утверждение относительно ограниченной применимости зонной а1шрок-симаш1и в случае электронов -оболочки.  [c.457]

В металлах вклад в магнитную восприимчивость кроме атомных остовов, расположенных в узлах решетки, вносят коллективизированные электроны проводимости. Экспериментальные данные свидетельствуют, например, о том, что все щелочные металлы парамагнитны. При этом их парамагнитная восприимчивость не зависит от температуры. Поскольку решетка щелочных металлов диамагнитна, парамагнетизм может быть обусловлен только парамагнетизмом электронного газа. Из независимости парамагнетиз-  [c.329]

Для большинства парамагнитных солей магнитная восприимчивость как функция температуры имеет максимум (см. и. 28). Предположим, что соль размагничивается до температуры, лежащей несколько ни/ке этого максимума. После этого однородный подвод тепла (наиример, при помощи -у-излучения нли переменного магнитного поля) вызывает возрастание восприимчивости. Однако в случае неоднородного подвода тепла основная масса соли остается нри низкой температуре, то] да как небольшая часть ее нагревается до значительно более Bi.t oiion температуры, намного превышающей температуру максимума восприимчивости в этом случае измерения свидетельствуют об уменьшении восприимчивости (см., например, [75]).  [c.451]

Но ц=1-ь4лх, а и—магнитная восприимчивость для парамагнитных и диамагнитных веществ порядка 10 —10 , поэтому  [c.240]

Парамагнитные материалы отличаются тем, что, хотя их ато.мы и имеют магнитные. моменты, они неупорядочены, пока материал не находится в магнитном поле. Так, внешне парамагнетики проявляют себя как немагнитные материалы. Под действием магнитного поля магнитные моменты атомов этих материалов ориентируются в направлении внешнего магнитного поля и усиливают его. Магнитная восприимчивость парамагнетиков положительна, имеет значение от 10 до10 и не зависит от напряженности внешнего магнитного поля, но на нее значительно влияет температура. Относительная магнитная проницаемость парамагнетиков всегда больше единицы. К парамагнетикам относят кислород, некоторые металлы (например, А1, Сг, N3, Mg, Та, Р1, W), их оксиды (например, СаО, СгаОз, СиО).  [c.24]

Магнитные свойства и строение вещества. Как известно электрон обладает спиновым и орбитальным магнитными моментами. Геометрически складываясь моменты электронов создают результирующий магнитный момент атома М. Суммарный магнитный момент в единице объема, именуемый намагниченностью J, когда вещество не было намагничено и внешнее поле отсутствует, равняется нулю. Под воздействием магнитного иоля со средней напряженностью внутри тела, равной Н, намагниченность J = %Н, где х— магнитная восприимчивость. Намагниченность определяет величину магнитной индукции В = В + + %Н. Магнитные свойства вещества характеризует также относительная магнитная проницаемость х = 1 -10 гн м — магнитная постоянная вакуума. В зависимости от величины и знака магнитной восприимчивости вещества могут быть диамагнитные (Х<0), парамагнитные и ферромагнитные (х>>0). Рассмотрим две последние группы веществ. В парамагнитных веществах у атомов имеются магнитные моменты, однако иод влиянием теплового движения эти моменты располагаются статистически беспорядочно вдоль магнитного поля удается ориентировать лишь примерно одну десятитысячную процента всех спинов. В результате магнитная восприимчивость X мало отличается от нуля, а магнитная проницаемость парамагнитных материалов немногим больше единицы. К парамагнитным принадлежат некоторые переходные металлы, а также щелочные и щелочно-земельные металлы. Ферромагнитные материалы обладают весьма большой магнитной восприимчивостью, может достигать значений порядка 10 , после снятия поля сохраняется остаточная намагниченность. Ферромагнитные свойства при нагревании наблюдаются лишь до некоторой температуры 0, отвечающей точке Кюри — переходу нз ферромагнитного в парамагнитное состояние. Значение 0 для железа 769° С, для кобальта 1120° С, для никеля 358 С. При температурах Т G в отсутствие внешнего поля ферромагнетик состоит из микроскопических областей — доменов, самопроиз-  [c.226]

Титан относится к парамагнитным металлам, магнитная восприимчивость его, по данным различных авторов, составляет при 20°С 3,2 1(7 см /г. Она повышается с возрастанием температуры от —200 до +800°С по линейному закону. Температурный коэффициент в этом интервале составляет 0,0012-10 см /(г-°С). В области а->- 3-превращения наблюдается резкое возрастание восприимчивости. Так же, как и другие физические характеристики, магнитная восприимчивость титана зависит от кристаллографической направленности. Максимум удельной магнитной восприимчивости наблюдается вдоль плоскости призмы параллельно оси с кристаллической решетки, минимум —параллельно плоскости базиса. Легирование а-фазы приводит, как правило, к снижению удельной магнитной восприимчивости. Однако температурная зависимость магнитной восприимчивости в этом случае может отклоняться от линейной. По величине этого отклонения и температурному интервалу, в котором оно происходит, можно судить об образовании интерметаллических соединений или их предвыделений.  [c.6]


Исследование магнитных свойств монокристалла сапфира и поликристалла AI2O3 после облучения показывает, что сапфир имеет несколько большее сопротивление облучению, чем можно было представить по приведенным выше результатам. Удельная магнитная восприимчивость поликристалла AI2O3 была неизменной при облучении интегральным потоком до 3,76-10 нейтрон/см (Е >0,5 Мэе) при 30° С. Облучение не привело к изменению парамагнитного резонанса [146].  [c.152]

В ферромагнетиках, в отличие от парамагнитных тел, между неспаренными электронами внутренних недостроенных оболочек имеет место сильное обменное взаимодействие, вызывающее упорядоченное расположение их СПИновых магнитных моментов и спонтанное намагничивание доменов до насыщения Это приводит к существенным особенностям в протекании резонансного поглощения высокочастотной энергии ферромагнетиками, которое называют ферромагнитным резонансом. Физическая суть его состоит е том, что под действием внешнего магнитного поля Нд, намагничивающего ферромагнетик до насыщения, полный магнитный момент образца М начинает прецессировать вокруг этого поля с ларморовой частотой ojl, зависящей от Яо (11.25). Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное Яо, и изменять его частоту ш, то при ю = i. наступает резкое (резонансное) усиление поглощения энергии поля. Резонанс наблюдается на частотах порядка 20-Г-30 ГГц в полях 4- 10 -А/м (л 5000 Э). Поглощение при этом на несколько порядкоз выше, чем при парамагнитном резонансе, так как магнитная восприимчивость ферромагнетиков (а следовательно, и магнитный момент насыщения М) у них много выше, чем у парамагнетиков. Кроме того, так как в формировании эффективного магнитного поля в ферромагнетиках участвуют размагничивающий фактор и поле магнитной анизотропии, то частота ферромагнитного резонанса оказывается зависящей от формы образца.и,направления поля относительно осей легкого намагничивания.  [c.306]

Парамагнетики — это вещества, атомы, ионы или молекулы которых имеют результирующий магнитный момент при отсутствии внешнего магнитного поля. Во внешнем магнитном поле они намагничиваются согласованно с внешни.м полем, т. е. имеют положительную магнитную восприимчивость (я > 0). Парамагнитный эффект присущ веществам с неском-пенсированным. магнитным моменто.м ато.мов при отсутствии у них порядка в ориентировании этих моментов. Поэтому, когда нет внешнего магнитного поля, атомные магнитные моменты располагаются хаотически и намагниченность парамагнитного вещества равна нулю. При воздействии внешнего поля атомные магнитные моменты получают преимущественную ориентировку в направлении этого поля и у парамагнитного вещества проявляется намагниченность.  [c.6]

Кислород, содержащийся в анализируемых продуктах сгорания, является парамагнитным газом, т. е. газом, втягиваемым магнитным полем азот, водород, углекислый газ и водяные пары принадлежах к диамагнитным газам, т. е. к газам, отталкиваемым от магнитного ноля. Магнитные свойства газообразных продуктов сгорания оцениваются по магнитной восприимчивости, положительной для парамагнитных и отрицательной для диамагнитных газов. Таким образом, измерением магнитной восприимчивости анализируемого газа определяется содержание в нем кислорода.  [c.318]

Температура ниже 1 К определяется следующим образом. Предполагается, что для используемой при размагничивании парамагнитной соли закон Кюри (3-13) справедлив вплоть до самых низких температур. Измеряя магнитную восприимчивость образца при известной температуре гелиевой ванны Ту и магнг.тную восприим-  [c.72]

Измерения магнитной восприимчивости кластеров Hg,, и Ga,3 в магнитном поле с напряженностью до 15 кЭ показали, что они являются слабыми парамагнетиками независимо от температуры [313, 314]. Однако в поле с Я > 20 кЭ при уменьшении температуры ниже 70—80 К восприимчивость кластеров Hg,, возрастала по закону Кюри до больших (при Я = 40 кЭ х 1 э. м. е./г) парамагнитных значений, хотя массивная ртуть является диамагнетпком. Согласно [315, 316], магнитная восприимчивость кластеров Na в цеолите также подчиняется закону Кюри даже в больших магнитных полях. Изменение магнитной восприимчивости кластеров Ag в цеолите по закону Кюри—Вейсса при Т = 4—300 К обнаружено в [317]. Рост парамагнитной восприимчивости наночастиц Mg (d 3 нм) по сравнению с массивным магнием и резкое падение восприимчивости наночастиц при Т О отмечены в [318]. По мнению авторов [198], отмеченные эксперименталь-  [c.92]

При Г > 1 К большинство парамагнитных солей в слабых магнитных полях подчиняется закону Кюри М = сН1Т. В этой области магнитная температура совпадает с тер.чодина.мической. При болса низких температурах Т отличается от Г, н разность их значений возрастает по мере приближения к области максимума магнитной восприимчивости (сотых долей кельвина). Отклонения от закона Кюри появляются вследствие взаимодействий в кристаллической решетке. В температурной области, где влияние взаимодействия еще незначительно, разность между Т и Т можно вычислить теоретически.  [c.22]


Смотреть страницы где упоминается термин Магнитная восприимчивость парамагнитная : [c.1232]    [c.429]    [c.590]    [c.332]    [c.409]    [c.738]    [c.152]    [c.165]    [c.166]    [c.178]    [c.322]    [c.332]    [c.535]    [c.284]   
Физическое металловедение Вып I (1967) -- [ c.280 , c.317 , c.319 ]



ПОИСК



Восприимчивость

Восприимчивость магнитная



© 2025 Mash-xxl.info Реклама на сайте