Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден плавленый

Известно, ЧТО основными примесями, придающими хрупкость молибдену, являются кислород, азот, углерод и водород. В молибдене, плавленном в дуговой печи, содержание углерода можно снизить до 0,01%, содержание газов можно довести до очень малых величин, например кислорода примерно до 1 части на 1 миллион. Небольшого диаметра пруток такого молибдена может быть медленно согнут без разрушения до температур порядка —50° С. Если изгиб производится быстро или ударом, то пруток ломается. Выше 300° С хрупкости на таком молибдене не наблюдается.  [c.522]


Молибден повышает температуру рекристаллизации на 115°С, вольфрам - на 240°. Другие элементы повышают температуру рекристаллизации значительно слабее ванадий - на 50° хром - на 45° кремний - на 40° никель - на 20° алюминий - на 20°. Считают, что причиной повышения температуры рекристаллизации молибденом и вольфрамом, а следовательно и жаропрочности, является высокая температура плавления этих элементов.  [c.50]

В качестве материалов для покрытий используются тугоплавкие металлы (молибден, вольфрам и др.), металлокерамика (окиси, карбиды, нитриды металлов), графит. Температура плавления или разложения этих материалов 2000—3500° С.  [c.468]

Хром, молибден и вольфрам при 20 °С устойчивы при повышенных температурах они окисляются, особенно молибден и вольфрам, оксиды которых летучи. При высокой температуре эти металлы реагируют с азотом и углеродом их карбиды имеют высокие твердость и температуру плавления.  [c.111]

Молибден относится к наиболее тугоплавким элементам. По температуре плавления его превосходят только четыре элемента вольфрам, рений, тантал и углерод.  [c.456]

Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]

Когда речь идет о высокотемпературных конструкциях, куда входят молибден, вольфрам, ниобий и тантал с температурой плавления 2620, 3380, 2468 и 2996°, удивляешься тому, что природа наградила их, если так можно выразиться, ахиллесовой пятой — ведь все они начинают окисляться при довольно низкой температуре. При 300° на поверхности молибдена образуется светло-синий, а при 600° — темно-синий окисный слой, плотно прилегающий к поверхности металла. В температурном интервале 200—400° это в основном трехокись молибдена, а при температуре 400—650° окисная пленка состоит уже из двуокиси молибдена. При 705° она интенсивно улетучивается, в результате чего поверхностный слой разрыхляется, открывая доступ кислорода к металлу.  [c.137]

Распылению можно подвергать металлы с очень высокой температурой плавления, такие как молибден, высококачественные стали. Это позволяет существенно снизить расход дорогостоящих металлов, так как применение метода устраняет необходимость изготавливать все изделие из дефицитных и дорогих сортов металла. Успешно распыляют металлокерамику, композиционные материалы.  [c.138]


К числу жаростойких материалов относятся тугоплавкие металлы вольфрам, молибден, ниобий и некоторые другие. Все они очень сильно окисляются, что затрудняет их применение без специальной защиты, которую трудно создавать, они практически не могут быть использованы. Температура плавления многих из неметаллических тугоплавких материалов превосходит, и иногда значительно, 3000 °С.  [c.288]

Для изготовления контактов применяют тугоплавкие металлы вольфрам, молибден, рений. Они имеют наибольшую температуру плавления и твердость среди металлов, применяемых для контактов.  [c.303]

Сплавы титана с алюминием-, молибденом, цирконием и другими элементами наряду с высокой прочностью и малым удельным весом имеют хорошую коррозионную и эрозионную стойкость и высокую температуру плавления. Как и жаропрочные сплавы, они обладают низкой теплопроводностью и склонностью к сильному упрочнению. Но в отличие от других металлов титановые сплавы в процессе резания дают слабо деформированную стружку с малой усадкой и, следовательно, имеет место малая плош,адь контакта стружки с поверхностью режущего клина. Это приводит к большим удельным нагрузкам, концентрации теплоты на режущих кромках и тем самым к их форсированному износу. Последнее особенно значительно, когда в сплаве содержится более 0,2% углерода, т. е. больше предела растворимости его в титане, в результате чего образуются весьма твердые карбиды Ti .  [c.329]

Прочность межатомных связей тем выше, чем выше температура плавления и модуль упругости, энергия самодиффузии и энергия сублимации, сопротивление ползучести, чем ниже коэффициент теплового расширения. Соотношение всех указанных характеристик для молибдена свидетельствует о высокой прочности его межатомных связей в кристалле, а следовательно, о потенциально высокой его жаропрочности. Экспериментальные данные, приведенные в различных источниках, показывают, что молибден  [c.77]

Область твердых растворов рения в молибдене доходит до 58 весовых % рения при температуре, близкой к температуре плавления, и уменьшается с понижением температуры до 47 весовых % рения при 1100° С [50].  [c.100]

Отсутствие полиморфных превращений, высокое значение температуры плавления, модуля упругости и теплопроводности при относительно невысокой плотности и малом коэффициенте линейного расширения молибдена привлекают к нему все большее внимание конструкторов и разработчиков жаропрочных сплавов для новой техники [1, 78, 83, 86, 87, 145, 146]. В качестве конструкционного материала электроламповой промышленности и как легирующий компонент сталей молибден применяется уже несколько десятилетий. Промышленное производство металлического молибдена и применение его в электроламповой  [c.7]

Как было видно из предыдущего раздела, одним из наиболее подходящих материалов для изготовления электродов ТЭП в настоящее время считают молибден. Молибден и сплавы на его основе вполне отвечают требованию по температуре плавления, предъявляемому к материалам катода. Как правило, для улучшения механических и физических свойств молибдена в качестве легирующих элементов применяют титан, цирконий, ванадий, хром, углерод и другие металлы, которые несущественно изменяют температуру плавления основного металла.  [c.32]

Для снижения перепада температуры в стенке и улучшения условий отвода тепла материал стенки должен обладать большой теплопроводностью. Лучшими материалами для этих целей являются медь, молибден. Данный способ неприменим, когда температура поверхности превышает температуру плавления или когда происходит эрозия стенки.  [c.14]

Тугоплавкие металлы, а также графит весьма успешно противостоят как тепловому, так и механическому воздействию высокотемпературного газового потока, однако быстро разрушаются при окислении. К числу тугоплавких относят двенадцать металлов, температура плавления которых превышает температуру плавления хрома (2150 К). Некоторые из них вполне доступны (вольфрам, молибден, ниобий), другие относятся к числу редких.  [c.163]


Вольфрамо-молибденовые сплавы. Вольфрамо-молиб-деновые сплавы по сравнению с молибденом имеют более высокие значения температуры плавления, предела прочности и удельного электрического сопротивления в сравнении с вольфрамом они более пластичны и легко механически обрабатываются после отжига при температурах 1100—1300 "С.  [c.54]

Третья категория компонентов - фрикционные добавки, обеспечивающие порошковому материалу требуемый коэффициент трения и оптимальный уровень зацепления с рабочей поверхностью контртела. Такие добавки должны иметь высокие температуру плавления и теплоту диссоциации, не претерпевать полиморфных превращений в заданном интервале температур, не взаимодействовать с другими компонентами материала и с защитной средой при спекании, быть достаточно прочными и твердыми, хорошо сцепляться с металлической основой. Поэтому более широко в качестве фрикционных добавок используют оксиды кремния, алюминия, железа, магния, марганца, циркония, хрома, титана и др., некоторые карбиды (кремния, бора или вольфрама), силициды (железа и молибдена), или бориды (редких металлов и др.). К материалам на бронзовой основе в качестве фрикционного компонента добавляют железо, в том числе в виде чугунной крошки, вольфрам, хром, молибден и некоторые другие. Эффективно. Введение в состав порошкового фрикционного материала некоторых интерметаллидов, например алюминия и титана.  [c.61]

СПЕЧЕННЫЙ Молибден — тугоплавкий металл, изготавливаемый методом порошковой металлургии. Дл получения компактного (беспористого) металла спеченные заготовки подвергают обработке давлением (ковке, протяжке, прокатке) как в холодном, так и в нагретом состоянии. С. м. отличается мелкокристаллич. структурой и по большинству своих свойств пе уступает металлу, полученному плавлением в электродуговых вакуумных печах. Метод порошковой металлургии является более простым, дешевым и производительным, чем метод плавления, но при этом С. м. содержит большее количество примесей, в частности кислорода, и хуже поддается сварке, чем молибден плавленный.  [c.186]

Молибден является тяжелым металлом его плотность равна 10,2 Мг1м - . Температура плавления молибдена 2010° С. Молибден обладает достаточно хорошими физико-механическими свойствами, в особенности сопротивлением ползучести при высоких температурах. Предел прочности листового материала 1200 относительное удлинение 10—12%, твердость  [c.292]

Недостатки эмалей определяются прежде всего природой стекла. Чтобы стекло, было достаточно жидкоподвижным и могло смачивать поверхность металла, подлежащего покрытию, температура нагрева должна быть 1200 К. С другой отороны, интервал рабочих температур покрытия ограничен температурой плавления стекла данного состава. Кроме того, необходимость принятия специальных мер по предохранению от окисления тугоплавких металлов, таких как молибден, вольфрам и др., значительно усложняет технологию обжига эмалей при покрытии этих металлов (обжиг осуществляется в вакууме или в инертной среде).  [c.105]

Молибден (Мо), представляющий стратегический интерес в оборонной промышленности, относится к подгруппе VIA (Сг, Мо, W), расположен под номером 42, имеет атомную массу 95,95, атомный радиус г = 0,140 нм. Его температура плавления 2620°С, кипенил 4600°С. Кристаллическая структура метлибдсна - кубическая емноцентрированш1я, а = 0,31466 нм, плотность составляет 10,2 г/см.  [c.91]

Марганец, с одной стороны, являясь аустенитообра-зующим элементом, с другой — повышает температуру плавления сернистых эвтектик, препятствуя развитию красноломкости. При содержании десятых долей процента марганца растворимость серы в железе понижается в десятки раз. Подобно марганцу, но в меньшей степени действуют и другие элементы (хром, титан, цинк, бериллий). Никель, кобальт и молибден снижают температуру плавления сернистой эвтектики и в этом отношении являются вредными элементами в кремнистой стали.  [c.507]

Тугоплавкие и редкие металлы—.вольфрам, тантал, ниобий и частично молибден— получают главным образом методами порошковой металлургии. За последнее время, однако, для производства молибдена все в большем масштабе fipHMeHHeT fl дуговое плавление.  [c.598]

При приблизительно одинаковом составе металлокерамическне материалы 8 ряде случаев (см. стр. 571) имеют более низкую длительную жаропрочность, а также жароупорность, чем плавленные. Однако термостойкость и вибростойкость у металлокерамических материалов выше. Кроме того, в металлоке-рлмических материалах менее выражено вредное влияние ориентировки после механической деформации. Пластичные высокожаропрочные материалы, которые обладают достаточной термостойкостью в переплавленном состоянии, например молибден и его пластичные сплавы, лучше готовить методами вакуумного или дугового плавления.  [c.605]

Если сравнить кривые нагружения металлов с ОЦК- и ГЦК-решетка-ми с поправкой на модуль сдвига и температуру плавления (рис. 3.11) то, кривые упрочнения ОЦК-поликристаллов лежат значительно ниже, чем для плотноупакованных металлов. Кроме того, железо, молибден и ниобий подвергаются деформационному упрочнению (судя по наклону кривых) практически с одинаковой скоростью, но менее интенсивно, чем любой из металлов с ГЦК-решеткой. Поскольку эффекты модуля и температуры исключены, то различия в деформацион-  [c.119]

Согласно [400], энергия, запасаемая при пластической деформации, составляет величину порядка 1 % теплоты плавления. Учитывая, что в молибдене, деформированном при температурах ниже 0,3— 0,4Гпл, средний диаметр ячеек составляет около 2 мкм с углами раз-ориентировок не менее 2—3°, и полагая, что запасаемая при пластической деформации энергия аккумулирована в основном границами ячеек, можно оценить энергию, запасаемую границами. Оказывается, что у г л 2у и соответственно Уэф яе 0.  [c.199]


Были опробованц иные способы нанесения циркония и ниобия на подложки из ниобия, молибдена и вольфрама. На установке для получения плавленных карбидов, смонтированной в секторе тугоплавких материалов, была исследована возможность расплавления при помощи электронного обогрева порошков циркония и ниобия, предварительно намазанных на подложки из ниобия, молибдена и вольфрама. Оказалось, что цирконий и ниобий при плавлении на молибдене образует каплю, цирконий растекается на ниобиевой подложке, но при охлаждении отстает от нее. Хорошо сцепляется ниобиевое покрытие с вольфрамовой подложкой, однако слой получается неравномерный по толщине, образец коробится.  [c.76]

Упругость пара окислов вольфрама и молибдена при температуре плавления окислов тантала и ниобия достаточно высокая, что обеспечивает интенсивное протекание указанных реакций. При этом происходит интенсивный массоперенос через контактную границу, что резко понижает межфазную поверхностную энергию. Развитие реакций такого типа подтверждается тем, что в момент нанесения жидкого окисла тантала на вольфрам или молибден в вакууме, наблюдается резкое ухудшение вакуума от 10 мм рт. ст. до 10 мм рт. ст., несмотря на могцную откачную систему.  [c.314]

Колтман и др. [20] показали, что в меди, облученной при 4° К, уже при 7° К наблюдаются явления частичного отжига. Чтобы провести сравнительное изучение изменений удельного электросопротивления различных металлов, облучение необходимо проводить при таких температурах, при которых не происходят явления отжига. Металлы с высокими температурами плавления имеют большие изменения электросопротивления в результате облучения при комнатной температуре. Указывается на большое увеличение электросопротивления молибдена, титана, циркония и железа, облученного при 80° С [16]. Подвижность дефектов -СИЛЬНО зависит от температуры плавления металлов. Опыты Кинчина и Томсона [48] по облучению молибдена и вольфрама быстрыми нейтронами при 78° К указывают на значительный эффект отжига молибдена и частично вольфрама при 90 и 120° К соответственно. Считают, что явления отжига в молибдене могут происходить и в интервале 20—90° К. Вероятно, даже в самых тугоплавких металлах происходит отжиг дефектов во время облучения при всех температурах, за исключением только чрезвычайно низких.  [c.272]

Отдельно следует рассмотреть применение молибдена и его сплавов для нужд большой химии. При использовании молибдена для изготовления различных изделий возникают значительные технологические трудности. Некоторой пластичностью молибден обладает лишь в деформированном (ниже температуры рекристаллизации), а следовательно, и в наклепанном состоянии. При сварке в зоне, прилегающей к сварному шву, происходит рекристаллизация и металл полностью охрупчивается. Таким образом, молибден относится к числу несвариваемых металлов. Однако высокая температура плавления и возможность эксплуатации молибдена при температурах 1500-2000°С, когда сплавы железа и никеля переходят уже в жидкое состояние, вызывают необходимость преодолевать эти технологические трудности.  [c.86]

По коррозионной стойкости Мо значительно превосходит высоконикелевые сплавы и титан. Согласно приведенным выше данным, в Н2 SO4, как и в дрзггих кислотах (НС1, H2SO4), по коррозионной стойкости молибден занимает промежуточное положение между ниобием и танталом (см. рис. 41, 42). Необходимо отметить, что ни различие в химическом составе молибденового сплава, ни технология его изготовления (вакуум-плавлен-ный, спеченный), ни структурное состояние (наклепанный, рекристаллизованный) не влияют на скорость общей коррозии, определяемую весовым методом. В связи с этим все промышленные сшшвы, если их рассматривать как коррозионностойкие, можно объединить под общим названием — молибден. Несмотря на одинаковую скорость общей коррозии,  [c.90]

Таким образом, низкотемпературный отжиг (температуру 700° С для молибдена, имеющего температуру плавления 2600° С, можно считать низкой) обеспечивает наилучший комплекс механических свойств биметалла сталь-молибден. При этом происходит дисперсионное упрочнение молибдена, а карбидная прослойка разрастается еще недостаточно для того, чтобы сильно охрупчить соединение этих разнородных металлов.  [c.101]

Несколько больший краевой угол смачивания и меньшая адгезия наблюдаются в случае смачиваемости исследуемыми припоями керамики 22ХС с Мо-металлизацией. Вероятно, в результате меньшей растворимости сплава Си—Ge в чистом молибдене фиксируется и больший краевой угол. Так, при температуре плавления он составляет 30, 32, 30, 25, 25° соответственно для ПМГ-12, № 446, № 442, № 432, № 439, а адгезия равна 1995, 2090. 2140, 2170, 2372 мдж1м , при увеличении температуры на 50° С краевой угол составляет 26, 26, 27, 21 и 18°, а адгезия 2020, 2130, 2150, 2195,  [c.67]

Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (< 1500° С) часто в сплавах не наблюдается состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4].  [c.161]

Молибден в основном применяется при изготовлении нагревателей для высокотемпературной техники в условиях вакуума или в восстановительной атмосфере при температурах до 1700°С. В машиностроении он используется как облицовочный материал. Температура плавления молибдена 2625°С, но он окисляется уже при температурах выше 500 С, поскольку окис-ная пленка из М0О3 испаряется. Молибден устойчив в муравьиной, уксусной, щавелевой, фосфорной, соляной и фтористоводородной кислотах, в растворе трнхлорида железа, хлорида аммония и многих других растворах солей. Устойчивость молибдена уменьшается в присутствии окислителей.  [c.155]

Влияние молибдена. Молибден, соединяясь с кислородом, образует легкоплавкую и в то же время летучую окись с температурой плавления 795° С. Высокая упругость диссоциации паров окиси молибдена при высоких температурах и ее легкоплавкость являются причиной ускоренного окисления молибденосодержащих сталей. Чем выше содержание молибдена в стали, тем сильнее идет процесс окисления, который сопровождается образованием очень рыхлых слоев окислов.  [c.221]

Перспективен для применения в электротехнике благодаря наличию ценных физических свойств сочетанию высокой температуры плавления и значительной электронной эмиссии. Применяется в виде окиси в производстве вольфрамовых нитей для ламп накаливания. Добавки 0,1 — 3 % окиси гафния к вольфраму, танталу замедляют процесс рекристаллизации проволоки этих металлов, способствуя увеличению срока службы нитей накала. В сплаве с вольфрамом или молибденом применяют для изготовления электродов газоразрядных трубок высокого давления. В сплавах титана применяют в качестве геттеров в вакуумных и газонаполненных электролампах, радиолампах. Сплавы с Мп, Сг, Ре, Со, N1, Си и Ар — катоды рентгеновских трубок, нити накаливания. Сплав 0,5 — Hf, < 80 — N1, - 20 — Сг — для электронагревателей. Электровакуумная техника, сверкжаростойкая керамика  [c.351]


Основным методом получения монокристаллов тугоплавких металлов, в частности молибдена, является зонная плавка в электроннолучевой установке. Поскольку жидкий молибден реагирует со всеми известными огнеупорами, наиболее перспективным видом зонной плавки является бестигельная зонная плавка. При бести-гельной плавке зона расплавленного металла удерживается от вытекания силами поверхностного натяжения между двумя вертикальными твердыми частями заготовки, расположенными по одной оси. Выращивание монокристаллов молибдена проводилось на электроннолучевой установке С-248-М . В качестве исходного материала использовались металлокерамические прутки и прутки, полученные ковкой из слитков дуговой вакуумной плавки. Вакуум при выращивании монокристаллов составлял 10 мм рт. ст, натекание 0,5 лмк1сек, скорость перемещения расплавленной зоны 2—4 мм1мин, направление движения расплавленной зоны снизу вверх. При выращивании монокристаллов применялось вращение образца, что способствовало равномерности плавления и стабилизации расплавленной зоны. После двух-трех проходов расплавленной зоны вырастал монокристалл. Этим методом удалось получить монокристаллы молибдена диаметром до 20 мм, длиной до 400 мм. Режимы выращивания представлены в табл. I. 38.  [c.93]

При осуществ/1ении термоэмиссионной программы по ядер-ной энергетике в ФРГ было проведено изучение пяти различных термоэмиссионных реакторных систем (табл. 2.3) [162], которое завершилось созданием национального проекта термоэмиссионного реактора встроенного типа [27, 32, ПО, 162], в котором основным катодным материалом является молибден. Проведенные лабораторные испытания диодов (эмиттер — поликристалли-ческий молибден с ориентированным вольфрамом, коллектор— молибден) показали почти одинаковые результаты независимо от способа производства молибдена (спеченного или литого). Правда, в последующих исследованиях [116] было установлено, что эмиттер из порошкового молибдена дает усадку в процессе работы, и порошковый молибден был заменен на плавленый. Полагают, что, начиная с электрической мощности 20 кВт, ядер-ные энергетические термоэмиссионные установки более предпочтительны, чем солнечные батареи. Ожидается, что масса ТЭП мощностью 20 кВт будет составлять около 1500 кг, а масса ТЭП мощностью 100 кВт —около 2200 кг, включая массу защиты. Такая конструктивная гибкость в сочетании с не-  [c.26]

В качестве конструкционных материалов для систем с радиационным охлаждением применяются тугоплавкие металлы — молибден, вольфрам и др., однако в окислительной среде, в том числе и в воздухе, температура их разрушения Гразр оказывается намного ниже температуры плавления. В тех случаях, когда радиационная система тепловой защи-  [c.19]


Смотреть страницы где упоминается термин Молибден плавленый : [c.510]    [c.370]    [c.389]    [c.533]    [c.571]    [c.612]    [c.13]    [c.95]    [c.136]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.40 ]



ПОИСК



Молибден

Молибден плавленый порошковый

Молибден плавленый спеченный

Молибденит

Плавление

Сыр плавленый



© 2025 Mash-xxl.info Реклама на сайте