Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий в речной воде

Питтингообразование алюминия интенсивно развивается в речных водах, содержащих хлориды, карбонаты и медь. Влияние меди особенно существенно в жесткой воде, так, содержание 0,02 мг/л меди способно привести к питтинговой коррозии алюминия. В мягкой воде, несмотря на ее большую коррозионную агрессивность, опасная концентрация меди выше, но и растворимость меди в мягкой воде больше. Образовавшийся на поверхности алюминия питтинг может развиваться в средах, которые сами по себе не способны вызвать коррозию. Во всех речных водах скорость роста глубины поражения быстро снижается со временем. При движении воды со скоростью >0,3 м/с питтингообразование замедляется или вообще подавляется. Повышение температуры может интенсифицировать процесс развития питтингов, но в то же время при температуре выше 50 °С в агрессивных жестких водных средах питтингообразование подавляется вследствие образования защитных пленок оксидов.  [c.54]


На коррозионную стойкость алюминия влияет кислород, растворенный в воде. В деаэрированной воде потенциал коррозии алюминия отвечает пассивному состоянию. При увеличении концентрации кислорода в воде до 8—10 мг/л, что соответствует насыщению воды воздухом, потенциал коррозии алюминия увеличивается, но остается в пределах пассивной области, т. е. скорость коррозии не изменяется. В аэрированных же растворах с большой концентрацией хлорид-ионов (0,01 моль/л и выше) значения потенциала коррозии алюминия находятся в пределах области активного растворения металла. Очевидно, что увеличение концентрации кислорода должно привести к интенсификации катодных процессов, возрастанию потенциала коррозии алюминия и скорости анодного растворения металла в активном состоянии. Так, увеличение парциального давления кислорода с 0,1 до 2,3 МПа приводит к возрастанию скорости коррозии чистого металла (99,00%) в речной воде.  [c.55]

Таким образом, хотя в целом аэрация нейтральных водных сред способна улучшить условия формирования оксидных пленок на алюминии и его сплавах, в водных средах, содержащих хлориды, в том числе и в речных водах, эти пленки не обеспечивают эффективной защиты металла. Для обеспечения противокоррозионной защиты алюминия целесообразнее деаэрация воды. Кислород может быть связан, например, химически с помощью гидразина. Следует отметить, что введение гидразина в воду не оказывает коррозионного действия на алюминий и его сплавы.  [c.55]

Развитие точечной коррозии в речной воде в зависимости от чистоты сплавов алюминия. Продолжительность испытаний 5 суток [65]  [c.79]

В речной и питьевой воде алюминий коррозионно-стоек. Из неорганических кислот он может применяться только в концентрированной азотной кислоте.  [c.37]

Оборудование химических производств, контактирующее с нейтральными водными средами, преимущественно изготавливается из сталей различных классов, латуней (включая мышьяковистые), сплавов алюминия и титана, мельхиора. Основными видами оборудования, подвергающегося коррозии, являются всевозможные технологические аппараты, трубопроводы, соответствующая арматура и контрольные приборы, теплообменники и охладители, теплоэнергетическое оборудование заводских котельных и систем горячего водоснабжения, расходные и аккумуляторные баки и другие емкости, отстойники, фильеры, поглотители и абсорберы, насосы и др. Следует учитывать, что в системах охлаждения, оборудование которых эксплуатируется при температурах до 60 °С, используется преимущественно морская и речная вода в оборудовании, работающем при более высоких температурах, особенно в условиях парообразования, а также в адсорберах применяется в основном химически очищенная и обессоленная вода. В аппаратах, использующих воду Б качестве растворителя и реакционного агента, применяется химически обессоленная вода или вода высокой степени чистоты.  [c.10]


В речных и озерных водах железо и алюминий присутствуют в количестве от десятых долей до нескольких миллиграммов в литре воды. Содержание взвешенных веществ в воде горных рек достигает в летние месяцы 5000—8000 мг/кг, а в воде равнинных рек в периоды паводков до 200—600 мг/кг. Загрязненность речных и озерных вод органическими соединениями наблюдается преимущественно в летнее время и в периоды паводков. Окисляемость названных вод по кислороду достигает 12—20 мг/кг.  [c.571]

Алюминий устойчив только в тех водах (речной, водопроводной), в которых содержание хлоридов мало, что понятно, если учесть активирующее действие иона хлора на защитную пленку. Ясно, что алюминий без защиты неприменим в морской воде.  [c.100]

Избирательная коррозия наблюдается преимущественно в латунях, реже в оловянных и алюминиевых бронзах и совсем редко в медноникелевых сплавах. При этом виде коррозии конфигурация изделия сохраняется, но вместо компактного сплава остается губчатая медь. Прокорродировавшие детали теряют свои прочностные свойства. Избирательная коррозия может возникнуть в морской, речной и водопроводной воде, растворах, содержащих хлориды, и в других агрессивных растворах. Сильно разбавленные растворы хлоридов в присутствии бикарбоната натрия способны вызвать избирательную коррозию почти любых латуней, включая и латуни, содержащие алюминий, и алюминиевые бронзы.  [c.119]

Коррозию металлов в воде и водных растворах солей, pH которых находится в интервале 5—9, мы условно будем считать процессом, протекающим в нейтральной среде. На практике коррозия металлов происходит очень часто в таких нейтральных средах—в дождевой, речной, грунтовой, морской воде, в растворах солей, используемых в технике. Процесс коррозии большинства металлов в этих средах протекает почти исключительно с участием кислорода в катодной реакции и не сопровождается заметным выделением водорода. Продукты коррозии металлов обычно представляют собой малорастворимые вещества, например гидроокиси железа (ржавчина), основные карбонаты цинка, свинца и меди, гидроокись алюминия и др. Такие вещества частично экранируют поверхность металла (например, блокируя катодные участки), в какой-то мере защищая его от дальнейшей коррозии. Однако защитное действие продуктов коррозии черных и многих цветных металлов весьма невелико. Во влажной атмосфере гигроскопичные продукты коррозии не только не защищают металл, но даже способствуют его усиленному разрушению. Поэтому применение ингибиторов коррозии в нейтральных средах является одним из эф( к-тивных средств сохранения металла.  [c.133]

Протекторная зашита стальных и железных конструкций широко используется в морской воде или растворах солей в зоде и мало пригодна в речной воде. Протекторами для железа и стали являются цинк, алюминий и магний, а также сплавы на основе этих металлов, например сплав магния с 6% А1 и 3% 2п, сплак алюминия с 5% 2п и сплав цинка с 5% А1. Из указанных протекторов наиболее эффективным является магниевый сплав, потенциал которого в морской воде мало изменяется и равен—1,2 в. Худшие результаты дают алюминий и его сплавы, так как при этом возникает более высокий потенциал (—0,67 в), который в дальнейшем еше повышается вследствие поляризации через некоторое время такой протектор может вообще прекратить свое действие. Цинк и цинковые сплавы занимают промежуточное положение. На цинковом сплаве в морской воде устанавливается потенциал, равный — 0,78 в, который с течением времени облагораживается и приближается к потенциалу железа, но не так близко, как алюминий.  [c.62]

Слой нитрида и его влияние на коррозионную усталость. Многообещающим методом защиты против коррозионной усталости стали является образование нитридного слоя (азотизация). Пленка нитрида, получаемая преимущественно на специальных сталях для азотизации, содержащих алюминий, хром и часто молибден, первоначально нашла распространение как обеспечивающая высокую поверхностную твердость, а не как средство увеличения коррозионной стойкости. Действительно, по крайней мере для некоторых сталей коррозия в кислотах увеличивается при азотизации, как указано Жил-летом и Белли , однако сопротивление коррозии при погружении в соленую воду, в многие пресные воды и в условиях обычной атмосферы несколько улучшается, а сопротивление коррозионной усталости в значительной степени возрастает. Это иллюстрируется результатами работы Инглиса и Лэка п[>едставленными в табл. 52. Полученные пределы коррозионной усталости соответствуют испытаниям, проводившимся при 1,7 10 циклах в речной воде.  [c.615]


С ростом концентрации хлоридов, бикарбонатов и ионоз меди диаметр язв уменьшается, а число нх возрастает. Очевидно, рост концентрации солей приводит к увеличению числа активных участков на поверхности алюминия. Поскольку же общая катодная поверхность остается практически постоянной, анодная поляризация уменьшается и, следовательно, интенсивность разрушения каждого активного участка снижастся. При 71 С язвенная коррозия наблюдается только при наличии в растворе бикарбонатов. Однако в среде, содержащей 300 мг л хлоридов и 2 лгг/л ионов меди, добавка 5 мг/л бикарбоната ингибировала общую и язвенную коррозию. Водородный показатель (pH) среды влияет на развитие язвег.ной коррозии сплавов алюминия АД1. Так, в воде с 50 мг/л хлоридов в первые 5 мин зародыши язв не развиваются. при рН = = 5,95—6,02. При более высоком pH на. поверхности сплава появляются точки [65]. Однако с ростом pH от 6,02 до 10 количество язвенных поражений убывает, а глубина их возрастает. Введение в речную воду дополнительно 0,88 г/л сульфата натрия подавляет язвенную коррозию [65]. Силикат же натрия не. подавляет язвенную коррозию, обусловленную присутствием в воде хлоридов [66] — одних из иаттболее часто встречающихся в воде примесей.  [c.33]

Низколегированные конструкционные стали содержат небольшие количества никеля, меди, хрома, кремния и алюминия и в слабоагрессивных средах, т. е. в морской и речной воде, в промышленной и морской атмосфере, обладают повьшгенной коррозионной стойкостью по сравненшо с углеродистыми сталями.  [c.38]

На блоках, где конденсаторы охлаждаются речной водой, через неплотности могут проникать частички алюмосиликатов (глины), содержащиеся в определенные периоды года в охлаждаемой воде. Эти глинистые частички почти не задерживаются фильтрами конденсатоочистки. При подогреве воды происходит их разложение, после чего окись алюминия и кремпекислота, составляющие эту глинистую взвесь, могут участвовать в формировании отложений в проточной части турбин. (Ред.)  [c.13]

Промышленную (речную) воду после подогрева в теплообменнике очищают от механических, органических примесей методом осаждения коагулированной взвеси в осветлителе и на механическом фильтре. В качестве коагулянта применяют сульфат алюминия при pH 5,7—7,5 и температуре 30—40 °С. Под воздействием коагулянта крупно- и мелкодисперсная смеси осаждаются в осадкоуплотнителё осветлителя, а затем сбрасываются в канализацию. Осветленная вода проходит механический фильтр и поступает на очистку ионообменными смолами. Технология и коррозионная стойкость оборудования ионообменной очистки описаны в работе [8].  [c.25]

Чистый алюминий устойчив в естественных водах (речной, водопроводной). В водах с большим содержанием хлоридов (морской) коррозия НОСИТ местный характер. Часто наблюдается точечное разъедание. Алюминий применим в растворах тех нейтральных солей, которые не разрушают пленки, и особенно устойчив в растворах окислительных солей, например, нитратов, хромово- и двухромовокислых солей и т. п. В растворе солей галоидоводород ных кислот алюминий менее устойчив. В присутствии солей тяжелых и благородных металлов, вытесняемых из раствора алюминием, он быстро разрушается. Влияние pH на скор ость коррозии алюминия показано на рис. 51.  [c.88]

Осветлитель Речная вода со щламом, с содержанием растворенного кислорода до 9 мг/кг, коагулянт сернокислого алюминия (давление атмосферное) Лак ХСЛ в 16 слоев  [c.796]

Интересное исследование коррозии алюминиевых сплавов было проведено Сверена [37], который обнаружил, что рециркулирующие воды являются значительно более агрессивными по сравнению с речными или иодпиточными водами. Коррозия проявляется главным образом в виде точечной. В присутствии кислорода наиболее разрушающими свойствами обладали ионы меди, хлора, кальция и бикарбоната. Особенно быстро образуются питтинги в присутствии меди, что связано с контактным осаждением ее ионов иа поверхности алюминия. В практических условиях зарегистрированы случаи, когда в системах, изготовленных из алюминия, где для микробиологической обработки использовались препараты, содержавшие медь, происходило быстрое разрушение алюминия. Ионы хлора обладают способностью проникать через защитную окисную пленку и вызывать коррозию. Вредное действие могут оказывать также бикарбонат-ионы, поскольку они относятся к опасным ингибиторам, т. е., подавляя общую коррозию, могут  [c.91]

У титана и его сплавов высокая коррозионная стойкость в атмосферных условиях, пресной и морской воде. Особенность титана и его сплавов — отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением в большинстве коррозионных сред, что объясняется их высокой способностью к пассивации по сравнению с другими металлами (более низким критическим потенциалом пассивации и более низкой плотностью критического тока пассивации). Титан и его сплавы при контакте усиливают коррозию магния, цинка, кадмия, алюминия и их сплавов в мор" скойЪоде. В атмосферных условиях, а также в речной и морской воде титан н >го сплавы не нуждаются в защите от коррозии. 18  [c.18]


Смотреть страницы где упоминается термин Алюминий в речной воде : [c.35]    [c.65]    [c.9]    [c.81]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.55 , c.56 ]



ПОИСК



Речная вода

Речная вода коррозия алюминия



© 2025 Mash-xxl.info Реклама на сайте