Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптическая накачка схемы

Простейшая схема оптической накачки  [c.450]

Кванты света поглощаются, а частицы переходят из состояния с энергией Ео в состояние с энергией Е2. Такое заселение уровня 2 получило название оптической накачки. Инверсия населенности здесь может быть получена либо между уровнями 2 и El (т. е. П2>П]), либо между уровнями 1 и о( 1> о)- В первом случае усиление возникает на переходе Ет Еи во вто- Рис. 9.9. Трехуровневая ром — на переходе Ei- Eo. Ясно, что для схема переходов создания инверсной населенности между  [c.317]


Принципиальная схема оптического квантового генератора с оптической накачкой показана на рис. 35.8. Накачка активного элемента осуществляется с помощью специальных импульсных газоразрядных ксеноновых ламп-вспышек. Длительность вспышки 10 с и меньше.  [c.279]

В случае оптической накачки свет от мощной некогерентной лампы с помощью соответствующей оптической системы передается активной среде. На рис. 3.1 представлены три наиболее употребительные схемы накачки. Во всех трех случаях активная среда имеет вид цилиндрического стержня, как это обычно встречается на практике. Его диаметр может быть от нескольких миллиметров до нескольких сантиметров, а длина — от нескольких сантиметров до нескольких десятков сантиметров. Лазер, очевидно, может работать в импульсном или в непрерывном режиме, в зависимости от того, является ли лампа накачки импульсной (лампа-вспышка) или непрерывной. Изображенная  [c.110]

Рис. 3.3. Схема, поясняющая принцип нерезонансного преобразования частоты в лазере с оптической накачкой Рис. 3.3. Схема, поясняющая принцип нерезонансного <a href="/info/179229">преобразования частоты</a> в лазере с оптической накачкой
Рис. 3.11. Типичная схема оптической накачки для f/i -лазера Рис. 3.11. Типичная схема оптической накачки для f/i -лазера
Структурная схема разработки на ЭВМ газовых лазеров с оптической накачкой  [c.153]

Основную группу лазеров на твердых телах составляют лазеры на ионных кристаллах и стеклах. Основной метод возбуждения таких лазеров — оптическая накачка, наиболее характерный режим работы — импульсный. При этом, конечно, выбор исходных уравнений и численных значений величин для расчета существенно зависит от длительности импульсов накачки, гене рации и частоты их следования. Основные схемы расчета лазеров на твердых телах в настоящее время можно считать достаточно хорошо разработанными [10, 12, 27, 75, 89—92]. Твердотельные лазеры, наиболее важными и типичными представителями Которых являются лазеры на рубине и активированных неодимом стеклах, возникли одними из первых. Их разработка, исследование и расчет продолжается уже свыше четверти века и многие проблемы можно считать решенными, а методы расчета хорошо разработанными. Однако формулировки общих задач и методов расчета на современном этапе развития представляются более сложными, чем в случае электроразрядных лазеров на газах.  [c.176]


Рис. 3. Схема лазера с оптической накачкой Рис. 3. <a href="/info/565190">Схема лазера</a> с оптической накачкой
Схема лазера с оптической накачкой приведена на рис. 3. Видно, что лазер состоит из следующих основных элементов среды, чаще называемой активным веществом, двух зеркал, называемых открытым зеркальным резонатором, источника возбуждения, источника питания и рефлектора. Активное вещество, используемое для получения индуцированного излучения, должно обладать такими уровнями энергии, переход между которыми сопровождается излучением, лежащим в требуемом диапазоне длин волн. Это вещество должно иметь определенную концентрацию активных частиц, т. е. тех частиц, которые обеспечивают накопление и выделение энергии. Понятно, что чем больше будет таких частиц, тем большее их число примет участие в накоплении и излучении энергии. Активное вещество помещено в открытый зеркальный резонатор. Принцип его работы достаточно хорошо понятен из рассмотрения рис. 4. Видно, что в ситуации а все частицы активного вещества (кроме двух) находятся в основном состоянии, т. е. на нижнем энергетическом уровне. В ситуации б внешнее электромагнит-  [c.17]

При электроникой накачке (вообще говоря, можно осуществлять и оптическую накачку) возбуждение происходит в основном по схеме  [c.119]

Рис. 1.5. Работа лазера как функционирование объединённой пары тепловых двигателей, запущенных в прямом и обращённом режимах. Эта схема тепловой машины удобна для анализа эффективности лазерной операции. В качестве оптической накачки используется лампа-вспышка Рис. 1.5. Работа лазера как функционирование объединённой пары <a href="/info/20984">тепловых двигателей</a>, запущенных в прямом и обращённом режимах. Эта <a href="/info/27466">схема тепловой</a> машины удобна для <a href="/info/401440">анализа эффективности</a> лазерной операции. В качестве <a href="/info/14551">оптической накачки</a> используется лампа-вспышка
В лазере, работающем по трехуровневой схеме, для поддержания инверсной заселенности верхнего уровня рабочего лазерного перехода > N ) используется оптическая накачка на смежном переходе 1- 3 (рис. 1.1). Энергия фотона накачки - Е , плотность энергии электромагнитной волны накачки - Кинетические уравнения для разности населенностей рабочего перехода N = в отсутствие генерации и для плотности числа частиц (населенности) уровня 3 имеют следующий вид  [c.22]

Условия реализации стационарной инверсии при оптической накачке. Начнем с рассмотрения двухуровневой схемы, изображенной на рис. 1.7. Вероятность сУа складывается из двух слагаемых — отвечающего индуцированному испусканию, инициированному излучением накачки, и отвечающего спонтанному испусканию  [c.23]

К. м. с оптической накачкой лишён этих недостатков. В нём поляризация вещества достигается воздействием на иарамагн. атомы светового излучения определ. частоты. Реальная система зеемановских уровней парамагн. атомов (К, ВЬ, s), применяемых в К. м., сложна. Однако принцип оптич. накачки может быть проиллюстрирован на npo Tennreii двухуровнево схеме. Свет накачки должен быть таким, чтобы вероятности его поглощения существенно различались для разных подуровней. В атом случае под действием света накачки примерное равенство населённостей этих подуровней нарушится и в ансамбле атомов возникнет макроскопич. электронный магн. момент — система станет поляризованной (см. Оптическая накачка, Оптическая ориентация атомов).  [c.332]

Рис. 3. Схема самогенерирующего квантового магнтгаометра с оптической накачкой. Рис. 3. Схема самогенерирующего квантового магнтгаометра с оптической накачкой.

В 1961 г. Е. Снитцером в качестве рабочего тела лазера с оптической накачкой был предложен ион неодима, помещенный в матрицу из стекла. Схема основных лазерных уровней иона неодима приведена на рис. 5.5. В отличие от рубинового лазер не неодиме работает по четырехуровневой схеме. Излучение лампы накачки активно поглощается целой системой полос, лежащих в диапазоне длин волн от 900 до 350 нм с временем жизни 10 "...10 с. В результате эффективных безызлучательных переходов возбуждение с этих уровней передается на метастабильный уровень " 3/2 > время жизни которого в случае стеклянной матрицы лежит в диапазоне 10 ". ..10 с в зависимости от концентрации неодима и марки стекла. Наиболее интенсивная линия люминесценции соответствует переходу на уровень V,, 2 с Х = 1,06 мкм. Ширина этой линии составляет 20...40 нм. Нижний лазерный уровень /и/г поднят над основным на 2,2-10 см . Из-за малого времени жизни этого уровня относительно безызлучательных переходов (10. ..10 ) и его низкой равновесной заселенности инверсия в данной схеме возникает при сравнительно низких уровнях возбуждения 1 Дж/см и таким образом, четырехуровневая схема ионов позволяет устранить один из наиболее серьезных недостатков рубиновых %/г м " ti,S-to n- лазеров.  [c.177]

Рубик обрабатывается в виде стерженька, длина и диаметр которого определяют мощность излучения. Его торцы полируются до получения оптически плоской поверхности, затем они подвергаются серебрению для получения отражающихся поверхностей. Выходной конец кристалла является полупрозрачным. Рубиновый стерженек помещается вблизи импульсной лампы, служащей источником широкополосного света для оптической накачки. Энергетическая схема квантового генератора на рубине представлена на рис. 3-28.  [c.231]

В гл. 1 мы показали, что процесс, который переводит атомы с уровня 1 на уровень 3 (для трехуровневого лазера см. рис. 1.4, а) или с уровня О на уровень 3 (для четырехуровневого лазера см. рис. 1.4,6), называется накачкой. Накачка осуществляется, как правило, одним из следующих двух способов оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных (например, для рубинового или неодимового) или жидкостных (например, на красителе) лазеров. Механизмы ушире-ния линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно мы имеем дело не с накачкой уровней, а с накачкой полос поглощения. Следовательно, эти полосы поглощают заметную долю (обычно широкополосного) света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что у них спектральная ширина линий поглощения невелика, а лампы для накачки дают широкополосное излучение, осуществить оптическую накачку довольно трудно. Замечательным исключением, которое следует отметить, является цезиевый лазер с оптической накачкой, когда пары s возбуждаются лампой, содержащей Не при низком давлении. В данном случае условия для оптической накачки вполне благоприятны, поскольку интенсивная линия излучения Не с 390 нм (достаточно узкая благодаря низкому давлению) совпадает с линиями поглощения s. Фактически этот лазер представляет интерес лишь в историческом плане, как одна из первых предложенных лазерных схем. Кроме того, его реализация на практике является весьма сложной, поскольку пары s, которые для обеспечения достаточного давления газа необходимо поддерживать при температуре 175 °С, представляют собой весьма агрессивную среду. Оптическую накачку весьма эффективно можно было бы использовать для полупроводнико-  [c.108]

В таких схемах нижний лазерный уровень заселен мало по сравнению с заселенностью основного состояния, так как А > кТ. Это позволяет получить большой коэффициент усиления и высокий квантовый выход такого лазера. Рассмотренные схемы являются схемами однофотонного возбуждения. Возможны также ступенчатые многоквантовые схемы работы лазеров с оптической накачкой. На рис. 3.2, в при ступенчатом возбуждении  [c.128]

Рис. 3.2. Схемы уровней, поясняющие работу ГЛОН с резонансной оптической накачкой Рис. 3.2. Схемы уровней, поясняющие работу ГЛОН с резонансной оптической накачкой
Рис. 3.4. Комбинированная схема ГЛОН (молекулы А возбуждаются оптической накачкой А------ В — Рис. 3.4. <a href="/info/120984">Комбинированная схема</a> ГЛОН (молекулы А возбуждаются оптической накачкой А------ В —
Используя результаты анализа, в котором были выделены основные процессы, определяющие режим генерации в газовом лазере с оптической накачкой, структурную схему разработки ТЛОН можно представить блоками, приведенными на рис. 3.18. Рассмотрим характеристики этих блоков, общих для любого ГЛОН.  [c.153]


Пример 3. Резонаторы ГЛОН. Как уже отмечалось, в ГЛОН могут быть использованы резонаторы двух типов открытые и волноводные. Расчет характеристик открытых резонаторов ГЛОН MIR- и // -излучение) не отличается принципиально ни по постановке задачи, ни по технике ее реализации на ЭВМ от задач открытых резонаторов в оптическом диапазоне. Поэтому при расчетах открытых резонаторов ГЛОН можно пользоваться методиками и программами, изложенными в гл. 2. Рассмотрим результаты расчетов и анализ волноводных резонаторов. Конструктивно волноводный резонатор заложен в любом газовом лазере с разрядной трубкой, которая может рассматриваться как диэлектрический полый волновод. Но в оптическом диапазоне влияние стенок трубки на формирование поля в резонаторе не учитывается, так как отношение (ИХ d — диаметр трубки, X —длина волны) в этом диапазоне очень велико и каустика эффективного поля резонатора при таких условиях меньше диаметра трубки. Однако в ИК-диапазоне с успехом используются волноводные СОг-лазеры, где отношение d/i много меньше, чем в обычных лазерах за счет уменьшения d (единицы мм) [37]. При расчете характеристик такого лазера учитывается влияние стенок на формирование поля в резонаторе. В лазерах с оптической накачкой при увеличении длины волны излучения вплоть до субмиллиметрового и миллиметрового диапазонов отношение d/X становится еще меньше, даже с учетом того, что диаметры их трубок для увеличения эффективности генерации делаются большими по сравнению с диаметрами трубок СО -лазеров. Поэтому роль стенок трубки в заполненных эффективным полем объеме резонатора увеличивается. Рассмотрим наиболее типичную схему волноводного резонатора ГЛОН (рис. 3.28). Зеркала этого резонатора, расположенные на торцах диэлектрического поля волновода (трубки), имеют отверстия di и dg соответственно для ввода излучения накачки в активную среду ГЛОН и вывода излучения генерации. Так как задача является осесимметричной, будем искать искомые поля в резонаторе как функцию от координаты U (г). В качестве базисных функций этой задачи выбираются радиальные ортонормированные собственные функции бесконечного полого диэлектрического волновода со следующими условиями.  [c.163]

Настоящая книга является первой попыткой систематического изложения физических основ работы нового класса приборов нелинейной оптики — преобразователей инфракрасного излучения — в видимом диапазоне. Для удобства читателей, не имеющих специальной подготовки в области нелинейной оптики, монография включает главу (первую) с изложением основных понятий этого раздела физики, необходимых для восприятия предмета. Во второй главе даны общие принципы расчета нелинейно-оптических преобразователей и показано, что с точки зрения формирования изображений каждый преобразователь эквивалентен некоторой линейной оптической системе с эффективными параметрами, зависящими от конфигурации и фазового фронта накачки, ее амплитуды, типа использованного синхронизма. В третьей и четвертой рассмотрены две основные схемы нелинейно-оптических преобразователей — схемы критического векторного и касательного (некритичного) синхронизма. Обсуждаются достоинства и недостатки каждой из них и возможные варианты оптимизации параметров. В последней главе анализируются разные практические аспекты работы преобразователей (спектральные и шумовые характеристики), приведены экспериментальные данные, иллюстрирующие степень соответствия параметров реальных преобразователей основным теоретическим представлениям. Приложения 1 и 3 несут самостоятельную информацию, поскольку в первом приведен новый метод в классической теории аберраций на основе интегрального принципа Гюйгенса — Френеля, а в третьем — расчетные данные по углам разных типов синхронизма. Часть информации дана в компактной форме — показаны эквипотенциальные поверхности угол синхронизма как функция длин волн накачки и инфракрасного излучения. Материал третьего приложения основан на расчетах Г. М. Барыкинского.  [c.3]

Перспективы широкого практического использования нелинейно-оптических приемников зависят от параметров каждой из трех основных частей схемы приема — оптической накачки, нелинейной среды и системы регистрации излучения видимого диапазона. Если в вопросе регистрации видимого излучения трудно ожидать каких-либо качественных изменений, то по каждому из первых двух пунктов последнее время наблюдается заметный прогресс. Использование в качестве нелинейных сред новых кристаллов с большими нелинейными восприимчивостями, большими размерами и высоким оптическим качеством и в ряде случаев газов позволило суш,ественно ослабить ограничения, связанные с низким коэффициентом преобразования при сравнительно маломош,-ной накачке. С другой стороны, в области создания источников накачки наметился принципиальный сдвиг благодаря появлению полупроводниковых лазеров нового поколения. Совершенно реально ожидать в ближайшее время появления достаточно надежных малогабаритных источников накачки мош ностью порядка нескольких ватт в непрерывном режиме. Это выведет нелинейпо-оп-тические приемники уже на приборный уровень — непрерывный режим работы при высокой энергетической эффективности, малогабаритность и простота конструкции.  [c.143]

Рис. 4.4. Схемы лазеров с управляемой добротностью резонатора а — вращающейся призмой б — затвором, основанном на эффекте Поккельса в — пассивным затвором 1 — зеркало резонатора 2кварцевый осветитель 3 — активный элемент 4 — импульсная лампа оптической накачки 5 — вращающаяся призма (оптико-механнггеский за-тзор) — призма Глана 7 — кристалл KDP 5 — просветляющийся (фототропный) затвор Рис. 4.4. <a href="/info/565190">Схемы лазеров</a> с управляемой <a href="/info/18564">добротностью резонатора</a> а — вращающейся призмой б — затвором, основанном на <a href="/info/172559">эффекте Поккельса</a> в — пассивным затвором 1 — зеркало резонатора 2кварцевый осветитель 3 — <a href="/info/185651">активный элемент</a> 4 — <a href="/info/115203">импульсная лампа</a> <a href="/info/14551">оптической накачки</a> 5 — вращающаяся призма (оптико-механнггеский за-тзор) — призма Глана 7 — кристалл KDP 5 — просветляющийся (фототропный) затвор
Рассмотрим несколько подробнее способ создания необходимой инверсии населенностей при помощи оптической накачки. Под действием интенсивного облучения светом от источника накачки молекулы в активной среде переходят в возбужденное состояние. В качестве источника накачки в зависимости от типа лазера и конкретного назначения могут использоваться импульсные лампы, а также другие лазеры. Существенные особенности процессов накачки и генерации могут быть пояснены в зависимости от типа лазера на основании трех- или четырехуровневой схемы (рис. 2.2). Рассмотрим сначала трехуровневую схему в том виде, в каком она реализуется, например, в рубиновом лазере (рис. 2.2, а). Лазерное вещество возбуждается оптическим излучением накачки /р, под действием которого молекулы переходят из основного состояния 1 в возбужденное состояние 3. Затем большинство молекул путем быстрого безызлуча-  [c.51]

АИГ Nd-лазер принадлежит к твердотельным лазерам с оптической накачкой. Лазерно активными веществами служат синтетические кристаллы иттрий-алюминиевого граната (Y3AI5O12), содержащие ионы Nd + в объемной концентрации, приблизительно равной 1,5 %. Более высокие концентрации невозможны вследствие различия в радиусах ионов Nd и Y +. АИГ-кристаллы имеют кубическую решетку и поэтому являются оптически изотропными. На рис. 2.13, а показана схема уровней энергии иона Nd +, находящегося в электрическом поле кристалла. Из левой части рис. 2.13, а видно, что схема относится к четырехуровневому лазеру.  [c.75]


Схема энергетических уровней рубина показана на рис, 286. При облучении рубина белым светом голубая и зеленая части спектра поглощаются, а красная отражается. В рубиновом лазере используется оптическая накачка ксеноновой лампой, которая дает вспышки света большой интенсивности при про-хожденш через нее импульса тока, нагревающего газ до нескольких тысяч кельвин. Непрерывная накачка невозможна, потому что лампа при столь высокой температуре не вьщержи-вает непрерьшного режима работы. Возникающее излучение близко по своим характеристикам к излучению абсолютно черного тела. Излучение поглощается ионами Сг" , переходящими в результате этого на энергетические уровни в области полос поглощения. Однако с этих уровней ионы Сг" очень быстро в результате безызлучательного перехода переходяг на уровни Е, Е (рис. 286). При этом излишек энергии передается решетке, т. е. превращается в энергию колебаний решетки или, другими словами, в энергию фононов. Уровни Е и Е метастабильны. Время жизни на уровне Е равно 4,3 мс. В процессе импульса накачки на уровнях Е и Е накапливаются возбужденные атомы, создающие значительную инверсную заселенность относительно уровня Ео.  [c.322]

Для технологических целей наибольшее распространение получили ОКГ на твердом теле и газовые ОКГ. Упрощенная схема ОКГ на твердом теле представлена на рис. 217, а. Стержень изготовляют чаще всего из рубина, стекла с примесью неодима или алюмоиттрие-вого граната с примесью неодима. Рядом со стержнем 1 расположена газоразрядная импульсная лампа 2, осуществляющая оптическую накачку активной среды. Питание лампы 2 и управление ее работой производится специальным устройством 3. Стержень 1  [c.248]

В июне 1958 г. А. М. Прохоров в качестве резонатора предложил использовать интерферометр Фабри—Перо (открытый резонатор). Еще в 1949 г. Таунс и Шавлов для квантово-механических систем предложили использовать оптическую накачку, причем основной смысл их идеи заключался в возбуждении квантовых частиц на уровни, лежащие выше метастабильного состояния. Затем частицы по безызлучательным каналам накапливаются на соответствующем метастабильном уровне. Трехуровневая схема была реализована в 1960 г. Мейманом и исследована [Павловым. Тогда же Сорокин и Стивенсон предложили и реализовали четырехуровневую схему генерации на флюорите, активированном ионами урана — Сар2. и . Выбор используемых ионов для активных элементов осуществлялся Сорокиным и Стивенсоном на основании фундаментальных работ Л. И. Галкина и П. П. Феофилова по исследованию люминесценции трансурановых элементов.  [c.7]

Рубин. Холодильный прибор, использующий в качестве механизма охлаждения антистоксовую флуоресценцию, во многом аналогичен лазеру, запущенном в обратном режиме мощное когерентное строго направленное излучение вносится в активную среду, которая переизлучает почти изотропно и на более высокой частоте широкополосный свет. Многие исследователи именно с этих позиций подходили к выбору перспективной среды для охлаждения. В частности, всего спустя год после наблюдения непрерывной лазерной генерации в рубине [86] уже была высказана возможность оптического охлаждения в районе температур ниже 100 К [48]. Процесс охлаждения предлагалось осуществить по следующей схеме оптическая накачка возбуждает ионы трёхвалентного хрома, находящиеся в основном электронном состоянии и переводит их на нижний уровень — расщепления отсюда при установлении теплового равновесия происходит переход на уровень вверх, с поглощением фонона энергии 29см последующие спонтанные оптические переходы из этих состояний в основное, известные как К и Я2 линии, приведёт к отводу тепла из кристалла. Подробный расчёт этой схемы приведён в посвящённом рубину разделе параграфа 2.4. Но на 1963 год не было подробной информации о процессах, которые препятствовали оптическому охлаждению в рубине. В результате этого невозможно было оценить величину вклада в нагрев процессов многофононной релаксации, процессов релаксации пар (троек, четвёрок) ионов Сг+ , зависимости от времени установления ион-решёточного равновесия, от перепоглощения флуоресцентного излучения.  [c.55]

Такая модель пригодна для теоретического описания большинства свойств лазерного излучения. Но если мы хотим создать реальный лазер, схема уровней энергии становится более сложной. Можно различить три основных типа таких схем. Первая представлена на рис. 2.8. Электрон атома из основного состояния 1 возбуждается в состояние 3. Такое возбуждение может быть вызвано фотоном света накачки с частотой, соответствующей частоте перехода с уровня 1 на уровень 3 (метод оптической накачки, предложенный Кастлером). Затем электрон безызлучательно или с излучением может перейти с уровня 3 на уровень 2, который связан с уровнем  [c.44]

Довольно часто используется другая схема, которая представлена на рис. 2.10. Здесь оптическая накачка осуществляется с уровня О на уровень 3. В результате излучательной или безызлу-  [c.45]

Принципиальная схема твердотельного лазера представлена на рис. 6.22. Твердый активный элемент 2 размещают в резонаторе между двумя зеркалами 1 ш 3. Зеркало 1 полностью отражает все падающее на него излучение, а зеркало 3 является полупрозрачным. Оптическая накачка активной среды осуществляется энергией газоразрядной лампы-вспыщки 4 с источником питания 6. Для получения более эффективного облучения лампу 4 вместе с активным элементом 2 помещают в кожух 5, на внутреннюю поверхность которого нанесено отражающее покрытие типа серебра, золота и др. Кожух 5 имеет эллиптическую форму, а лампа и кристалл размещаются в фокусах эллипса. Этим достигаются условия равномерного и интенсивного освещения кристалла.  [c.439]

На рис. 1.8 показана определяемая формулой (1.2.7) зависимость Ыо1п от й. Легко видеть, что, какова бы ни была скорость накачки, величина Ыо остается отрицательной, т. е. инверсия не реализуется. Это означает, что при оптической накачке двухуровневые схемы не годятся.  [c.24]


Смотреть страницы где упоминается термин Оптическая накачка схемы : [c.19]    [c.91]    [c.127]    [c.129]    [c.129]    [c.137]    [c.138]    [c.151]    [c.154]    [c.170]    [c.174]    [c.48]   
Принципы лазеров (1990) -- [ c.0 ]



ПОИСК



Л <иер накачкой

Накачка оптическая

Оптические схемы накачки и резонаторы ГЛОН

Структурная схема разработки на ЭВМ газовых лазеров с оптической накачкой

Схемы накачки

Схемы оптические



© 2025 Mash-xxl.info Реклама на сайте