Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние агрегатное калорические

Уравнения (2.23) и (2.24) связывают теплоемкости Ср и Ср с термодинамическими параметрами р, V, Т и ы эти уравнения, полученные на основе первого закона термодинамики, справедливы, разумеется, для любого реального вещества, находящегося в любом агрегатном состоянии — твердом, жидком или газообразном (но однофазном). Практическая ценность уравнений типа (2.23) и (2.24) состоит в том, что они позволяют рассчитать все теплофизические свойства определенного технически важного вещества по результатам экспериментального определения лишь некоторых его свойств. Сложность в данном случае состоит в том, что в правой части, например уравнения (2.24), находятся не только уже упоминавшиеся термические параметры р, ю, Т, но и параметр иного рода — внутренняя энергия и. Зависимость и = и и, Т) или Рх и, V, Т) = 0 также является уравнением состояния данного вещества и в отличие от обычного (термического) уравнения состояния носит название калорического уравнения состояния. Величины и, Л, а также теплоемкости Ср и с называют калорическими свойствами вещества.  [c.32]


Зная основные закономерности, свойственные термодинамическим системам, и владея аппаратом дифференциальных уравнений термодинамики, мы можем приступить к рассмотрению термодинамических свойств веществ, обращая при этом главное внимание на анализ характера зависимостей, связывающих одни свойства вещества с другими. Предметом нашего рассмотрения будут термические и калорические свойства, такие, как удельный объем, энтальпия, внутренняя энергия, энтропия, теплоемкости, термические коэффициенты в каждом из трех основных агрегатных состояний вещества и на кривых фазовых переходов.  [c.154]

Калорическое и термическое уравнения. Уравнения для р и Е в (1.10) обычно справедливы для одного агрегатного состояния вещества. Вместе с тем в последнее время большое внимание уделяется получению экспериментальным и теоретическим путем широкодиапазонных уравнений для Е (калорическое уравнение) и р (термическое уравнение), справедливых для твердого, жидкого и газообразного состояний вещества. При интенсивном нагружении материала может применяться следующая запись термического и калорического уравнений [99, 114, 165]  [c.8]


Физико-химическая кристаллография (1972) -- [ c.49 ]



ПОИСК



Агрегатное состояние



© 2025 Mash-xxl.info Реклама на сайте